
www.npoekran.ru

УСТАНОВКА ДЛЯ ДООЧИСТКИ, КОНДИЦИОНИРОВАНИЯ И ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ С АНТИОКСИДАНТНЫМИ СВОЙСТВАМИ

Руководство по эксплуатации

MOCKBA 2017

Получение питьевой воды с антиоксидантными свойствами в установках «ИЗУМРУД-К1» основано на использовании окислительно-восстановительных процессов.

Природные процессы естественной окислительно-

вительной деструкции и нейтрализации токсических веществ

ускоряются многократно в специальных миниатюрных электрохимических устройствах - элементах ПЭМ-3.

Технологические и эксплуатационные преимущества

- 1. Обработка воды в анодной камере электрохимического реактора с целью уничтожения микроорганизмов и микробных токсинов, окислительной деструкции органических соединений, придание воде свойств активного переносчика кислорода.
- 2. Отделение во флотационном реакторе части аноднообработанной воды вместе со скоагулировавшими частицами органического материала, прилипшими к пузырькам кислорода или озона. Флотационный реактор выполняет функцию не только сепаратора для отделения скоагулировавших органических частиц, но также реактора смешения, где происходит замедление протока воды и соответствующее увеличение времени воздействия высокоактивных оксидантов, образовавшихся в процессе анодной обработки воды, на микроорганизмы и микробные токсины.
- 3. Обработка воды в каталитическом реакторе с целью превращения возможного небольшого количества хлорсодержащих оксидантов, образовавшихся во время анодной обработки воды, в пероксиды и гидропероксиды.
- 4. Обработка воды в катодной камере электрохимического реактора с целью перевода ионов тяжелых металлов в нерастворимые гидроксиды и придания воде свойств антиоксиданта.

Отличительные преимущества установок «Изумруд-К1» заключаются в применении в конструкции установок специальной гидравлической схемы, обеспечивающей двукратную анодную и катодную обработку воды благодаря использованию двух проточных электрохимических модулей ПЭМ-3. Применение двух реакторов позволяет осуществить более полное превращение ионов тяжелых металлов в нерастворимые гидроксиды и удалении большей их части, а также обеспечивает значительное изменение окислительно-восстановительного потенциала воды в сторону усиления антиоксидантных свойств.

Назначение. Установка Изумруд-К1 предназначена для доочистки, кондиционирования и получения питьевой воды с антиоксидантными свойствами от муниципальных систем водоснабжения, с целью придания воде физиологически функциональных свойств.

Условия эксплуатации:

- температура окружающего воздуха от 1 до 40°С;
- относительная влажность воздуха до 80% при 25°С;
- температура водопроводной воды от 0 до 35°C;
- давление напорной водопроводной линии от 1,0 до 3,0 атм.;
- с минерализацией очищаемой воды от 0,06 до 0,5 г/л.

Основные технические характеристики

Производительность, л/ч	40-60
Удельный расход электроэнергии, Вт-ч/л	1,0
Напряжение питающей электрической сети, В	110 - 220+20
Частота питающей электрической сети, Гц	50 - 60
Потребляемая электрическая мощность, Вт	30
Габаритные размеры, мм	230x300x50
Вес, кг	1,65

Комплектность

Наименование	Кол., шт.
1. Установка ИЗУМРУД-К1, шт.	1
2. Источник питания (адаптер)	1
3. Соединительные шланги с быстроразъемными	3
Принадлежности	
2. Втулка переходная для гладкого крана или Втулка ВПЗ (для кранов с наружной (M22x1) или внутренней	1
(M24x1) резьбой	1
3. Система промывки	1
Эксплуатационная документация	
4. Руководство по эксплуатации	1

Описание установки. В пластмассовом корпусе установки размещены два диафрагменных электрохимических реактора (ПЭМ-3), каталитический реактор, флотационная камера, и система автоматического включения и отключения установки. На лицевой стороне установки расположен световой индикатор, сигнализирующий о наличии протока воды через электрохимическую систему очистки. На нижней панели прибора размещены быстроразъемные штуцера для подсоединения входных и выходных шлангов, а также разъем для подключения внешнего источника питания (адаптера).

Указание мер безопасности

- Запрещается производить техническое обслуживание (промывку) установки, с включенным в электросеть адаптером.
- Запрещается разбирать и ремонтировать установку.

• Не допускается хранить и транспортировать установку с остатками воды при температуре окружающего воздуха ниже 0°С.

Внимание потребителей!

Технологические и конструктивные особенности серийного ряда установок

«Изумруд» не предполагают:

- использование установок для опреснения воды;
- использование установок при работе с водой из **случайных источников** с интенсивными загрязнениями, мутными взвесями, обильными хлопьями ржавчины при исходном микробном заражении с общим микробным числом более 10⁴.

Подготовка к работе

- Подсоединить к установке входные и выходные шланги при помощи быстроразъемных штуцеров. Вставить разъем адаптера (источника питания) в гнездо электропитания установки (см. рисунок 1).
- Расположить установку на вертикальной поверхности, в непосредственной близости от водопроводного крана, слива в канализацию (раковины) и электрической розетки.
- Подключить установку к водопроводному крану при помощи разъёмной насадки. (Установку разъемной насадки на гладкий излив крана отечественного производства производить следующим образом: надеть на кран рифленую, крепежную гайку, затем уплотнительную резиновую втулку, конусом вверх, или уплотнительное резиновое кольцо, после чего свинтить переходную втулку и гайку до упора. На кран с изливом с внутренней резьбой насадка устанавливается с переходной резьбовой втулкой и двумя уплотнительными шайбами. На кран с наружной резьбой насадка устанавливается без переходной резьбовой втулки с одной уплотнительной шайбой) (см. рисунок 2).
- Дренажный шланг и шланг выхода очищенной воды направить раковину на слив.
- Подключить адаптер (источник питания) установки к электрической сети. Открыть водопроводный кран, установить необходимый расход воды 30-60 л/ч. (см. приложение). Проток воды через установку вызывает срабатывание системы автоматического включения установки. При появлении тока в цепи электрохимического реактора световой индикатор на корпусе установки загорается, что свидетельствует о начале процесса очистки воды.
- Шланг выхода очищенной воды направить в подходящую емкость.
 Рекомендуется после включения установки в течение одной минуты сливать обработанную воду до стабилизации процесса очистки воды.
 Из дренажного шланга во время работы установки вытекает вода, обогащенная ионами тяжелых металлов, нитратами, нитритами.
- Для отключения установки следует закрыть водопроводный кран. Прекращение протока воды приводит к выключению электропитания реактора и световой индикатор на передней панели установки гаснет.

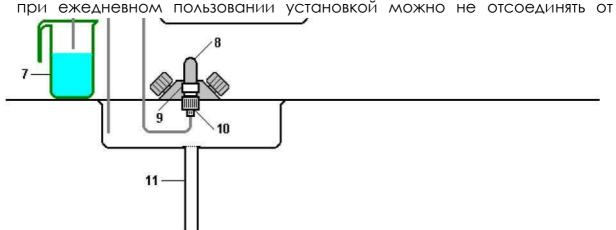


Рис. 1. Схема подключения установки

электросети. При длительных перерывах в работе рекомендуется:

- отключить установку от электросети;
- концы магистралей выхода очищенной воды и дренажа поместить в раствор фурацилина или раствор уксусной кислоты с целью предотвращения попадания внутрь шлангов микробов из воздуха и от случайных соприкосновений с загрязненной поверхностью мебели и

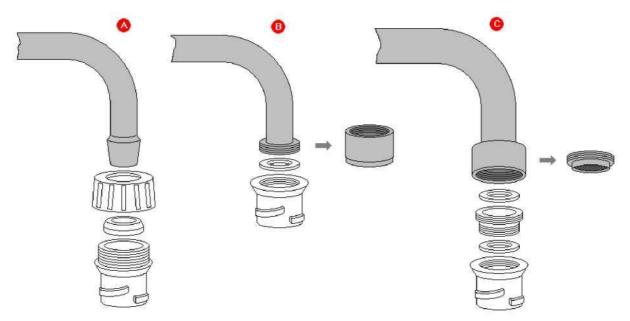


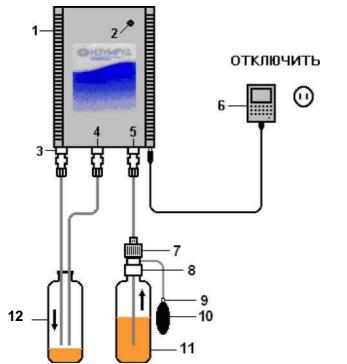
Рис. 2. Подключение соединительных втулок к водопроводному крану.

других предметов обихода.

Техническое обслуживание

• После получения каждых 150-200 литров очищенной воды необходимо промыть электрохимический реактор установки кислотным раствором с целью удаления катодных отложений (см. рисунок 3).

1


2

5

7

9

11

- установка ИЗУМРУД;
 - индикатор включения;
- 3 шланг выхода чистой воды;
 - дренажный шланг;
 - входной шланг;
- 6 источник питания;
 - втулка входного шланга;
- 8 промывочное устройство;
 - клапан нагнетателя;
- 10 груша-нагнетатель;
 - бутылка с кислотой;
- 12 пустая бутылка

Рис. 3. Схема промывки установки.

Промывку проводить следующем порядке:

Приготовить для промывки раствор соляной кислоты, разбавленный в соотношении 1:5 или

раствор уксусной эссенции, разбавленный в соотношении 1:3 объемом 1-1,5 л. в стандартной пластиковой емкости (бутылке) (см. рисунок).

- Отключить установку от электрической сети (вынув адаптер из розетки) и водопроводного крана.
- Навернуть переходную втулку 8 в сборе с нагнетателем 10 на пластиковую бутылку 11 с раствором кислоты.
- На втулку навернуть переходник 7 со шлангом от входной линии.
- Поместить шланги выхода дренажа 4 и очищенной воды 3 в пустую пластиковую бутылку 12.
- Закрыть клапан нагнетателя 9, повернув его против часовой стрелки. Нажимая на пневматический нагнетатель 10, обеспечить поступление раствора кислоты через электрохимический реактор в пустую пластиковую бутылку 12; характерная реакция со вспениванием выходящего раствора кислоты с выделением газов свидетельствует о нормальном ходе процесса промывки. Следует соблюдать меры предосторожности против разбрызгивания, так как при вводе кислотного раствора возможно его вспенивание углекислым газом, выделяющимся при растворении катодных отложений.
- Медленно перекачать раствор кислоты из полной емкости в пустую. При необходимости повторить операцию промывки, переставив переходную втулку входной линии на пластиковую бутылку с перекаченным раствором кислоты.

• По окончании промывки подключить вход установки к крану напорной водопроводной линии. Не включая адаптер в сеть, промыть реактор установки водой от остатков кислоты, затем привести установку в состояние, соответствующее эксплуатационному режиму.

Неисправности и методы их устранения

Неисправность	Вероятная причина	Метод устранения
Не загорается	1. Отсутствует	1. Проверить наличие
световой индикатор	электрический контакт в	вконтакта в розетке
при протоке водь	розетке	2. Увеличить объемный
через установку.	2. Недостаточный	расход воды до литров в
Не устанавливается	1. Недостаточное	1.Обеспечить
требуемый		необходимое давление
объемный расход.	водопроводной линии.	водопроводной линии 1,5-3
	2. Образовались	атм.
	катодные отложения	2. Промыть установку

Гарантии изготовителя

- Предприятие-изготовитель гарантирует соответствие установки требованиям технических условий при соблюдении потребителем условий транспортирования, хранения и эксплуатации.
- Гарантийный срок 1 год со дня продажи потребителю.

Свидетельство о приемке

Установка для доочистки питьевой воды Изумруд-К1, заводской номер ___ соответствует техническим условиям ТУ 9452-723-05834388-2006 и признана годной к эксплуатации.

М.П.	
Дата выпуска.	•••••
Дата продажи	•••••

Рекламации

В случае выхода из строя, установку вместе с паспортом следует возвратить на предприятие-изготовитель для гарантийного ремонта.

Установка для доочистки питьевой воды "Изумруд-К1" не содержит вредных, токсичных, горючих и взрывоопасных веществ. Транспортировка установки может быть осуществлена любым видом наземного или воздушного транспорта

ТАБЛИЦА РАСЧЕТА РАСХОДА ВОДЫ (НА 250 МЛ)

<u>ВРЕМЯ ,С</u>	РАСХОД "Л/Ч	время, С	РАСХОД "Л/Ч
3	300	27	33,3
4	225	28	32,1
5	180	29	31
6	150	30	30
7	129	31	29
8	113	32	28,1
9	100	33	27,2
10	90	34	26,4
11	82	35	25,7
12	75	36	25
13	69	37	24,3
14	64	38	23,6
15	60	39	23,1
16	56	40	22,5
17	53	41	22
18	50	42	21,4
19	47	43	21
20	45	44	20,5
21	43	45	20
22	41	46	19,5
23	39	47	19,1
24	37,5	48	18,8
25	36	49	18,4
26	34,6	50	18

Пример. Емкость объемом 250 мл. набирается за 18 сек., что примерно соответствует 50 л/час.