

Отдел продаж:

г. Москва

+7 (495) 744-44-88

+7 (499) 962-42-42

e-mail: encont@mail.ru

www.us800.ru

www.promrezerv.ru

Техподдержка, сервис, поверка:

г.Чебоксары

+7 (8352) 45-81-12 e-mail: us800@mail.ru

www.encont.ru

РАСХОДОМЕР - СЧЕТЧИК ЖИДКОСТИ УЛЬТРАЗВУКОВОЙ

US-800

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ, МОНТАЖУ, ПОВЕРКЕ

СОДЕРЖАНИЕ

BBE	ДЕНИЕ	3
ЧАС	ТЬ 1	
1.	ОПИСАНИЕ и РАБОТА	6
1.1	Назначение	6
1.2	Технические характеристики	8
1.3	Устройство и работа	15
1.4	Средства измерений, инструменты и принадлежности	22
1.5	Маркировка	23
1.6	Упаковка	23
2.	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	24
2.1	Эксплуатационные ограничения	24
2.2	Подготовка к использованию	27
2.3	Использование US800	37
3.	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	52
3.1	Общие указания	52
3.2	Меры безопасности	52
4.	ПОВЕРКА US800	52
5.	ТЕКУЩИЙ РЕМОНТ	53
6.	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	54
7.	РИЛИЗАЦИЯ	54
Прил	ложение А . Общий вид, габаритные и установочные размеры	55
Прил	ложение Б. Исполнения и схема внешних подключений основных исполнений US800	56
Прил	пожение В. Диаграмма оперативного управления индикацией	57
Прил	пожение Г. Описание дополнительных исполнений US800	59
Прил	тожение Д . Работа US800 в сети RS-485 и протокол обмена	68

ЧАСТЬ	2	
1. 2. 3. 4. 5. 5.1 5.2 5.3 6.	ОПЕРАЦИИ ПОВЕРКИ СРЕДСТВА ПОВЕРКИ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ ПРОВЕДЕНИЕ ПОВЕРКИ Внешний осмотр Опробование Определение метрологических характеристик ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ кение А. Методика градуировки US800	73 73 75 75 76 76 76 81
Прилож	кение Б. Схема включения US800 при градуировке	83
ЧАСТЬ 1. 2. 3. 4. 5. 5.1 5.1.1 5.1.2 5.1.3 5.1.4 6. Прилож	ОПЕРАЦИИ ПОВЕРКИ СРЕДСТВА ПОВЕРКИ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ ПРОВЕДЕНИЕ ПОВЕРКИ ПЕРВИЧНАЯ ПОВЕРКА Внешний осмотр Опробование Определение относительных погрешностей ЭБ US800 Определение и измерение параметров УПР Определение коэффициента коррекции ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ кение А. Схема включения US800 при проведении поверки	85 86 88 89 89 90 90 94 103 106
Прилож	кение Б. Зависимость скорости распространения ультразвуковых импульсов от температуры	109
копидП	кение В. Коэффициент кинематической вязкости воды	111
Прилож	кение Г. Эквивалентная шероховатость трубопровода	112
КопидП	кение Д. График к определению гидродинамического коэффициента Кг min	113

ЧАСТЬ 1

Руководство по эксплуатации предназначено для ознакомления с устройством расходомера - счетчика жидкости ультразвукового US800 (далее - US800) и состоит из трех частей.

Первая часть содержит описание состава, функциональных возможностей и принципа действия, сведения необходимые для монтажа на месте эксплуатации и для заказа US800.

Во второй части приведена методика первичной и периодических поверок проливным методом.

В третьей части приведена методика первичной и периодических поверок имитационным методом.

US800. случаях использования его сферах государственного регулирования обеспечения единства измерений, подлежит первичной И периодической поверкам органами Государственной метрологической службы ПО документу «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001PЭ. Часть 2» или по документу US 800. «Расходомер-счетчик жидкости ультразвуковой Руководство по эксплуатации US800.421364.001PЭ. Часть 3».

Расходомер-счетчик жидкости ультразвуковой имеет свидетельство об утверждении типа средств измерений **RU.C.29.006.A № 43735** и зарегистрирован в Государственном реестре средств измерений РФ под **№ 21142-11**.

В состав US800 входят:

- электронный измерительный блок (далее ЭБ);
- ультразвуковой преобразователь расхода (далее УПР), представляющий собой участок трубопровода с условным диаметром от 15 до 2000 мм с установленными на нем пьезоэлектрическими преобразователями (далее ПЭП).

УПР в зависимости от исполнения может быть:

- однолучевой при установке одной пары ПЭП на оси, проходящей через диаметр поперечного сечения трубы;
- двухлучевой при установке двух пар ПЭП на осях, параллельных друг другу и проходящих через равные хорды поперечного сечения.

Для трубопроводов с условными диаметрами от 15 до 1400 мм могут поставляться УПР, изготовленные в заводских условиях.

При заказе и в документации другой продукции, в которой могут быть применены US800, необходимо указать исполнение ЭБ, условный диаметр и исполнение УПР, длину (от 5 до 500 м) каждого из двух высокочастотных кабелей РК-50-2-11 на канал, тип выходных сигналов, необходимость и вид поверки.

Пример записи US800 при заказе или в документации другой продукции:

Наличие поверки:

N – для некоммерческих измерений (без клейма госповерителя);

Р – поверка канала измерения имитационным методом;

R – поверка канала измерения на расходомерной установке по эталонному расходомеру-счетчику.

Дополнительные опции:

Опция (при необходимости):

U - регистратор давления (токовый вход 0-5 мА, 0(4)-20 мА),

см. приложение Г1

Опция (при необходимости): дискретный выход

Z (Дозирование)

Z (Дискретный выход понижения расхода), см. приложения Г3,Г4 и др. опции по заказу.

Примеры:

Расходомер - счетчик US800 - 21 - 000/000 - 025/030 - А - Р - с двумя каналами измерения расхода, УПР не поставляются, на каждый канал измерения поставляется комплект монтажных частей и комплект датчиков ПЭП, длина соединительного кабеля 2х25 м на 1-й канал и 2х30 м на 2-й канал, с частотными/импульсными выходами, с функцией архивирования (интерфейс RS485), поверенный имитационным способом.

Расходомер - счетчик US800 - 33 - 100 - 010 - А - Р - одноканальный с двухлучевым УПР, на трубопровод условным диаметром 100 мм, длина соединительного кабеля 2 х 2 х 10 м, с частотным/импульсным и токовым выходами, с функцией архивирования (интерфейс RS485), поверенный имитационным способом.

В связи с постоянной работой над усовершенствованием US800 возможны отличия от настоящего руководства, не влияющие на метрологические характеристики.

1. ОПИСАНИЕ И РАБОТА

1.1 Назначение

- 1.1.1 Расходомер-счетчик жидкости ультразвуковой US800 предназначен для измерения среднего объемного расхода (в дальнейшем расхода) и объема жидкостей, протекающих в одном или двух напорных трубопроводах. US800 измеряет расход и объем жидкостей, свойства и течение которых в трубопроводе с условным диаметром от 15 до 2000 мм соответствуют условиям:
 - число Рейнольдса не ниже 5000;
 - максимальная скорость не более 12 м/с;
 - полное заполнение трубопровода жидкостью;
 - температура от 0 до +150 °C;
- содержание газообразных и твердых веществ не более 1% от объема.
 - 1.1.2 US800 выпускается в исполнениях:
 - с каналом измерения расхода по однолучевому УПР;
- с двумя каналами измерения расхода по двум однолучевым УПР;
 - с каналом измерения расхода по двухлучевому УПР.

Каналы измерения расхода гальванически разделены от первичных преобразователей, между собой, а также от других цепей, и работают параллельно независимо друг от друга.

US800 может использоваться на предприятиях всех отраслей промышленности как средство измерения расхода и объема по одному или двум трубопроводам:

- горячей, холодной, в том числе питьевой воды;
- промышленных и бытовых стоков;
- агрессивных жидкостей (кислот, щелочей и т.п.), мазута, масел;
 - жидких пищевых продуктов, кроме газированных напитков;
- любой другой жидкости, отвечающей приведенным выше условиям.

- 1.1.3 US800 позволяет измерять расход и объем при реверсировании потока жидкости в трубопроводе с режимами энергонезависимого счетчика объема:
 - по модулю;
 - с учетом знака;
 - только в одном направлении.
- 1.4 US800 может передавать информацию об измеренных расходах и объемах внешним устройствам в виде:
 - унифицированных сигналов силы постоянного тока 4-20мА (гальв. развяз);
 - частотно/импульсных сигналов (гальв. развяз.);
 - цифровых сигналов стандарта RS485 (гальв. развяз).
- 1.1.5 US800 может применяться в составе автоматических систем дозирования и регулирования расхода.
 - 1.1.6 US800 является:
- по метрологическим свойствам средством измерения, в случае использования его в сферах государственного регулирования обеспечения единства измерений;
 - по режиму работы непрерывного режима работы;
- по связи между каналами измерения, входными и выходными сигналами – с гальванической развязкой.
 - 1.1.7 Электронный блок US800 соответствует:
- группе исполнения В4 в соответствии с ГОСТ 12997 по устойчивости к воздействию температуры и влажности окружающего воздуха;
- группе исполнения Р1 в соответствии с ГОСТ 12997 по устойчивости к воздействию атмосферного давления;
- группе исполнения L3 в соответствии с ГОСТ 12997 по устойчивости к механическим воздействиям;
- степени защиты IP65 в соответствии с ГОСТ 14254-96 от проникновения внутрь оболочки твердых тел и воды.
 - 1.1.8 УПР US800 работоспособен:
- при температуре измеряемой среды от 0 до +150 °C и при изменении температуры окружающей среды от -40 до +60 °C при условии не замерзания измеряемой жидкости;
- при рабочем давлении измеряемой среды до 1,6 МПа, для специальных исполнений до 2,5, 4, 6,3 МПа;

■ при воздействии механических нагрузок по группе исполнения N3 ГОСТ 12997.

УПР соответствует степени защиты IP67 в соответствии с ГОСТ 14254-96 от проникновения внутрь оболочки твердых тел и воды. При установке УПР в заливаемые колодцы, исполнение ультразвуковых датчиков (ПЭП) должно соответствовать степени защиты IP68.

- 1.1.9 По принципу действия US800 нечувствителен к индустриальным радиопомехам и не создает помех с уровнем, указанным в «Общесоюзных нормах допускаемых индустриальных помех. Нормы 1-95-9-93». Соответствует требованиям ГОСТ Р 51649-2000, ГОСТ Р 51522-99.
 - 1.2 Технические характеристики
- 1.2.1 US800 измеряет средний объемный расход воды (жидкости) в зависимости от диаметра условного прохода (далее Ду) трубопровода в соответствии с таблицей 1.
- 1.2.2 Пределы относительных погрешностей ЭБ US800 указаны в таблице 2.

Таблица 2

	Относительна	ая погрешнос	ть, %	
при измерении времени распространения ультразвуковых импульсов и расхода	при преобразовании расхода в частотный/импульс ный сигнал	при преобразовани и расхода в аналоговый сигнал	при измерени и объема	времени наработки
± 0,4	± 0,1	± 0,4	± 0,5	± 0,1

1.2.3 Пределы погрешностей US800. относительных поверенных на поверочной расходомерной установке «Расходомер-счетчик соответствии С документом жидкости US800. Руководство ультразвуковой ПО эксплуатации US800.421364.001PЭ. Часть 2», указаны в таблице 3.

Таблица 1

				4	иа	мет	d.	50	ОВН	0.0	дп	Диаметр условного прохода УПР - Ду, мм	да	УП	Д-	λ, ν	Σ				
Расход, м /ч	/بر	15	15 25	32	40	50 65	65	80	100	150	200	250	300	350	400	500	80 100 150 200 250 300 350 400 500 600	002	008	006	1000
Максимальный, Qmax	Qmax	5	8	30	45		120	180	280	640	1100	2000	2500	3500	1500	2000	10000	14000	70 120 180 280 640 1100 2000 2500 3500 4500 7000 14000 14000 23000 23000 28000	23000	28000
	Q¹ _P	1	1,7	2,2	1 1,7 2,2 2,7 3,4 4,4 5,4	3,4	4,4		8,9	10,2 13,6	13,6	18	20	24	28	34	42	48	99	62	89
иереходный	Q²_p 0,5 0,8 1,1 1,3 1,7 2,2 2,7	9,0	8,0	1,1	1,3	1,7	2,2		3,4	5,1	6,8	6	10	12	14	17	21	24	28	31	34
Мишимовенній	Q ¹ _m 0,3 0,5 0,7 0,8	6,0	0,5	2,0	8,0	-	1,3 1,6	1,6	2	3	4	5	9	7	8	10	12	14	16	18	20
	Q^2_m 0,15 0,25 0,3 0,4 0,5 0,65 0,8	0,15	0,25	6,0	0,4	9,0	0,65		-	1,5	2	2,5	3	3,5	4	5	9	7	8	6	10
Верхние индексы в обозначении расходов:	351 B OG(3348	Y-EH	ИИ	Jacx	одо	.: ::														
1 - для температуры воды от 0 до +60 $^{\circ}$ C 2 - для температуры воды от 60 $^{\circ}$ C до +150 $^{\circ}$ C	атуры в атуры в	оды	о О	0 до 50°() +6(0°C	20°(O													
Qmax, d'p, d²p, d¹m, d²m - для Ду свыше 1000мм определяются по формулам	, a'm, G	$\sum_{m=1}^{2}$	5-	ЯД	y cal	ыше	10	00M	МОП	реде	эляк	ОТСЯ	ф 01	мдо	улам	_					
$Qmax = 0.034 \mu y^2_{r} Q^2_{p} = 0.068 \mu y$, $Q^2_{p} = 0.034 \mu y$, $Q^2_{m} = 0.04 \mu y$, $Q^2_{m} = 0.02 \mu y$	y, Q1p =	0,0	Б8Д	S,	² p =	0,0	34Д	Š	E	0,0	4Ду,	Ω²m	= 0,	02Д)	_						

Таблица 3

		Относительна измерении, %	•	юсть при
Диапазон расхода	Диаметр условного прохода, мм; и исполнение УПР	расхода по индикатору и частотному выходу	расхода по токовом у выходу	объема по индикат ору
0 . 0-	15-150 однолучевой	± 1,5	± 2,0	± 1,5
Q _{min} - Q _P	100-150 двухлучевой	± 1,0	± 1,5	± 1,0
00	15-150 однолучевой	± 1,0	± 1,0	± 1,0
$\mathbf{Q}_{P} - \mathbf{Q}_{max}$	100 -150 двухлучевой	± 0,5	± 1,0	± 0,5

1.2.4 Пределы относительных погрешностей US800, поверенных имитационным методом в соответствии с документом «Расходомер-счетчик жидкости ультразвуковой US800.Руководство по эксплуатации US800.421364.001PЭ. ЧастьЗ», указаны в таблице 4.

Таблица 4

		Относительна измерении, %	•	ность при
Диапазон расхода	Диаметр условного прохода, мм; и исполнение УПР	расхода по индикатору и частотному выходу	расхода по токовом у выходу	объема по индикат ору
0 0	32-200 однолучевой	± 3,0	± 3,0	± 3,0
Q _{min} - Q _P	100-200 двухлучевой	± 2,0	± 2,0	± 2,0
00	32-200 однолучевой	± 2,0	± 2,0	± 2,0
$\mathbf{Q}_{P} - \mathbf{Q}_{max}$	100-200 двухлучевой	± 1,5	± 2,0	± 1,5

1.2.5 Пределы относительных погрешностей US800 с использованием в качестве УПР участка действующего трубопровода и поверенных в соответствии с документом «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001РЭ. Часть3», указаны в таблице 5.

Таблица 5

		Относительна измерении, %	. •	ость при
Диапазон расхода	Диаметр условного прохода, мм; и исполнение УПР	расхода по индикатору и частотному выходу	расхода по токовому выходу	объема по индикато ру
0 . 0-	> 200 однолучевой	± 2,0	± 2,5	± 2,0
Q _{min} - Q _P	> 200 двухлучевой	± 1,5	± 2,0	± 1,5
00	> 200 однолучевой	± 1,5	± 2,0	± 1,5
Q _P – Q _{max}	> 200 двухлучевой	± 0,75	± 1,5	± 0,75

- 1.2.6 Изменение напряжения питания от 187 до 242 В не оказывает влияния на метрологические характеристики US800.
- 1.2.7 Изменение температуры окружающего воздуха от +5 до +50 $^{\circ}$ C не оказывает влияния на метрологические характеристики US800.
- 1.2.8 Воздействие внешнего магнитного поля напряженностью 400 А/м и частотой 50 Гц не оказывает влияния на метрологические характеристики US800.
- 1.2.9 Электронный блок US800 в исполнении с часами реального времени ведет учет прошедшего через трубопровод объема в энергонезависимых архивах:
 - часовом глубиной до 2976 среднечасовых значений;
 - суточном глубиной до 120 среднесуточных значений;
 - месячном глубиной до 190 среднемесячных значений.
- 1.2.10 Электрическое питание US800 осуществляется переменным однофазным током с номинальным напряжением 220 В, частотой (50 \pm 1) Гц и коэффициентом высших гармоник до 5%. Отклонения по напряжению не более плюс 22 В и минус 33 В.
- 1.2.11 Максимальная мощность, потребляемая от сети, не превышает 5 Вт.
- 1.2.12 US800 сохраняет информацию при отключении питания.
- 1.2.13 Виды сигналов электронного блока US800, пределы их изменения, нагрузка приведены в таблице 6.

Таблица 6

Вид сигнала	Пределы, диапазон зменения	Нагрузка, коммутируемый сигнал	Количество в зависимо- сти от ис- полнения ЭБ
Выходной аналого- вый силой постоян- ного тока (гальв. развязанный)	4 – 20 мА	до 0, 5 кОм	1(2)
Выходной частот- ный / импульсный (гальв. развязанный)	U _{max} – 5 В пост. тока; f _{max} – 1000 Гц (вес импульса от 0.0001 до 65535 л / имп)	не менее 100 Ом	1(2)
Последовательный цифровой интер- фейс RS485 (гальв. развязанный)	Скорость передачи: от 600 до 115200 бод Расстояние до1200 м	не менее 100 Ом; количество устройств в сети до 255	1
Последовательный цифровой интер- фейс RS232	Скорость передачи: от 600 до 115200 бод Расстояние до 15 м	количество устройств 1	1

- 1.2.14 Электрическое сопротивление изоляции между цепями питания и общим проводом ЭБ US800, между изолированными электрическими цепями и между этими цепями и общим проводом ЭБ не менее:
- 20 МОм при температуре окружающего воздуха (20 ± 2) °C и относительной влажности от 30 до 80 %.
- 5 МОм при температуре 50 °C и относительной влажности от 30 до 80 %.
- 1.2.15 Средняя наработка на отказ с учетом технического обслуживания, регламентированного руководством по эксплуатации составляет не менее 50000 часов при нормальных условиях.

US800 относится к восстанавливаемым, ремонтируемым, многофункциональным изделиям. Среднее восстановление работоспособного состояния не более 1,5 часов.

- 1. 2.16 Средний срок службы US800 не менее 12 лет.
- 1.2.17 Общий вид, габаритные и установочные размеры US800 приведены в приложении A.
 - 1.2.18 Macca ЭБ US800 не превышает 1,5 кг.

Массы УПР, в зависимости от диаметра условного прохода Ду, приведены в таблице 7.

Таблица 7

Ду, мм	15	25	32	40	50	65	80	100	150	200
Масса, кг	1,2	2,8	4,5	5,2	8	8	12	16	29	36

Ду, мм	250	300	350	400	500	600	700	800	900	1000
Масса, кг	38	45	52	70	112	162	250	400	500	700

1.2.19 Комплект поставки US800 указан в таблице 8.

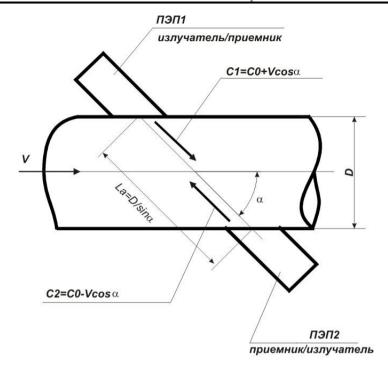
Таблица 8

Наименование	Количество в зависимости от исполнения ЭБ и УПР	Примечание
Электронный блок US800	1	Одноканальный; двухканальный; двухлучевой.
УПР фланцевый (по заказу - в сборе с ответными фланцами и крепежом) либо бесфланцевый, отторцованный под сварку	1(2)	Однолучевой / двухлучевой

Продолжение Таблицы 8

	Прод	олжение гаолицы в
Комплект пьезоэлектрических преобразователей с паронитовыми прокладками	1(2)	
		Если в заказе отсутствует УПР
Комплект монтажных частей (КМЧ-800)		
	2(4)	
Эксплуатационная документация в составе: руководство по эксплуатации US800.421364.001PЭ паспорт US800.421364.001ПС	1 1	При групповой поставке РЭ поставляется из расчета 1 экземпляр на десять US800.
Высокочастотный кабель РК-50-2-11 с волновым сопротивлением 50 Ом	М	Длина определяется заказом

- 1.3 Устройство и работа
- 1.3.1 Принцип работы US800


US800 измеряет расход на основе измерения времени распространения импульсов ультразвукового колебания через двигающуюся жидкость. Разность между временами распространения ультразвуковых импульсов в прямом и обратном направлениях относительно движения жидкости пропорциональна скорости ее потока.

Возбуждение ультразвуковых колебаний осуществляется пьезоэлектрическими преобразователями (далее – ПЭП), располагаемых на участке трубопровода, в котором производится измерение расхода жидкости. В зависимости от установки ПЭП относительно сечения потока, скорость последнего измеряется по двум или одному лучам ультразвуковых колебаний.

Принцип работы поясняется на рисунке 1.

Участок трубопровода с ПЭП, установленными диаметрально противоположных сторонах, образует первичный преобразователь расхода (далее – УПР). ультразвуковой УΠР устанавливаются однолучевом два ПЭП. которые оси проходящей через диаметр поперечного размещаются на сечения УПР. Двухлучевой УПР содержит две пары ПЭП, которые размещены на осях параллельных друг другу и проходящих через поперечного сечения. Оси vстановки хорды располагаются под углом к оси УПР или совпадают с нею (только в однолучевом УПР).

Движение жидкости вызывает изменение времени полного распространения ультразвуковых сигналов по потоку и против него. Скорость распространения ультразвукового импульса в жидкости, заполняющей трубопровод, представляет собой сумму скоростей ультразвука в неподвижной жидкости и скорости потока жидкости V в проекции на рассматриваемое направление распространения ультразвука. Таким образом, время распространения ультразвука по потоку и против него определяется в соответствии с формулами (1) и (2):

Рисунок 1

$$t_1 = \frac{L_{\pi} - L_{a}}{C_0} + \frac{L_{a}}{C_0 + V \cdot \cos(\alpha)},\tag{1}$$

$$t_2 = \frac{L_{\pi} - L_{a}}{C_0} + \frac{L_{a}}{C_0 - V \cdot \cos(\alpha)},$$
 (2)

где $t_1,\ t_2$ - время распространения ультразвукового импульса по потоку и против потока;

 L_a - длина активной части акустического канала;

 L_{∂} - расстояние между мембранами ПЭП;

 C_0 - скорость ультразвука в неподвижной воде;

V - скорость движения воды в трубопроводе;

lpha - угол в соответствии с рисунком 1.

Устройство, содержащее электронные узлы формирования и преобразования ультразвуковых импульсов, вычисления расхода, объема и вывода на основе измеренных времен распространения ультразвуковых импульсов, образует вторичный преобразователь – электронный блок (ЭБ). Вычисление расхода Q в ЭБ осуществляется по формулам (3) и (4) с учетом формул (1) и (2):

$$V = \frac{(t_2 - t_1) \cdot C_0^2}{2L_a \cdot \cos(\alpha)},\tag{3}$$

$$Q = \frac{\pi \cdot D^2 \cdot K}{4} \times \frac{(t_2 - t_1) \cdot C_0^2}{2 \cdot L_a \cdot \cos(\alpha)},$$
 (4)

где D – внутренний диаметр УПР в зоне установки ПЭП 1 и ПЭП 2;

K - коэффициент коррекции, рассчитываемый в зависимости от гидродинамических свойств жидкости и характера ее потока в УПР.

Для исключения влияния изменения скорости ультразвука в жидкости от температуры, в приборе учитывается фактическая скорость ультразвука, рассчитанная по формуле (5), которая является хорошим приближением формулы (6).

$$C_0^2 = \frac{L_{\pi}^2}{t_1 \cdot t_2},\tag{5}$$

$$C_0^2 = \left(\frac{2 \cdot L_{\pi}}{t_1 + t_2}\right)^2,\tag{6}$$

1.3.2 Устройство US800

1.3.2.1 УПР. изготовленный заводских В **УСЛОВИЯХ**. собой отрезок представляет трубы ИЗ нержавеющей кислотостойкой стали, к торцам которой (в случае с фланцевым исполнением) приварены два фланца по ГОСТ 12815-80. В случае бесфланцевого исполнения УПР, концы трубы торцуются под сварку. В средней зоне трубы приварены держатели. Держатели vстановки ПЭП. для которые устанавливаются паронитовыми прокладками и фиксируются в держателях гайками.

1.3.2.2 Конструктив вторичного преобразователя ЭБ собой приборный корпус из пластмассы для представляет настенного монтажа. В нижней части корпуса расположены ПЭП разъемы ДЛЯ подключения питания. при помощи высокочастотных кабелей и входов других приборов или устройств, принимающих аналоговые, частотные, цифровые сигналы ЭБ. Лицевая панель ЭБ защищена прозрачной крышкой, крепящейся четырьмя винтами к корпусу через уплотнение.

На лицевой панели ЭБ расположены:

- функциональная клавиатура из четырех кнопок «⇒», «ВВОД», «т̂», «СБРОС»;
 - девятиразрядный цифровой индикатор;
- два единичных светодиодных индикатора «**HOPMA**», «**OTKA3**».

Размещение функциональных узлов ЭБ внутри корпуса выполнено по платно-модульному принципу. Соединение между платами, являющимися функционально законченными узлами ЭБ, осуществляется через кросс-плату. На кросс-плату при помощи разъемных соединений устанавливаются:

- аналоговые платы;
- микропроцессорная плата;

Функциональная схема US800 приведена на рисунке 2.

Аналоговая плата обеспечивает:

- гальваническую развязку ПЭП от измерительной части канала измерения;
- посылку мощных импульсов через кабельную линию с волновым сопротивлением 50 Ом на ПЭП;

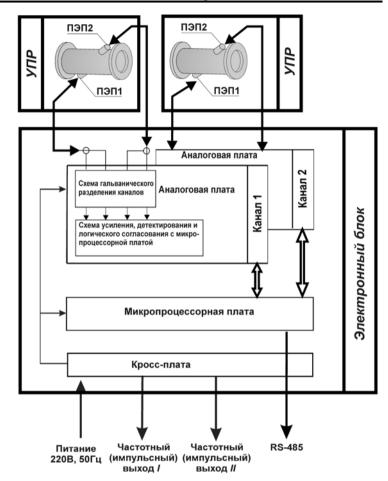


Рисунок 2

- прием (усиление и детектирование) слабых сигналов от ПЭП;
- логическое согласование временных процессов посылки и приема импульсов;
- автоматическую регулировку коэффициента усиления приемника в зависимости от уровня сигнала, поступающего на его вход;

• увеличение разрешения для точного измерения времен распространения ультразвуковых импульсов.

Микропроцессорная плата:

- управляет процессом попеременного зондирования потока жидкости ультразвуковыми импульсами;
 - вычисляет значения измеряемых параметров;
- обеспечивает ввод программируемых параметров с клавиатуры и вывод информации на индикатор;
- формирует выходные аналоговые сигналы пропорциональные расходам в каждом канале измерения;
 - обеспечивает связь по сети RS485;
 - проводит периодическую самодиагностику.

Кросс - плата обеспечивает:

- необходимые напряжения питания;
- формирование выходных частотно/импульсных сигналов.
- 1.3.3 Организация системы работы с US800
- 1.3.3.1 US800 имеет два режима функционирования:
- режим работы;
- режим программирования.
- 1.3.3.2 В режиме работы выполняются следующие функции:
- измерение текущего среднего объемного расхода и накопление объема в счетчиках жидкости по каждому из каналов;
- отображение текущих расходов, счетчиков объема и времени наработки на цифровом индикаторе по инициативе пользователя оперативное управление индикацией осуществляется посредством кнопки «РЕЖИМ»;
- сигнализация работоспособного состояния и возникающих сбоев по каждому из каналов измерения на светодиодных индикаторах;
 - приема/передачи информации по RS485;
- автоматическая компенсация смещения нуля канала измерения по инициативе пользователя.
- 1.3.3.3 Режим программирования служит для доступа к программируемым параметрам US800. Программируемые параметры определяют функционирование US800 в режиме работы, поэтому их некорректный ввод может привести к ошибкам

в измерениях и отображении информации на индикаторе, к потере связи по RS485.

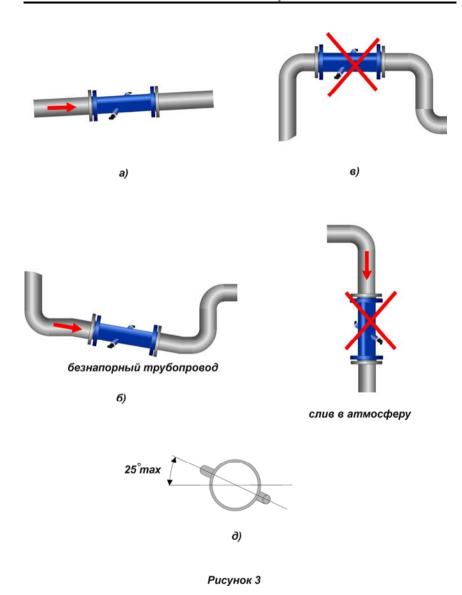
Программируемые параметры включают в себя:

- параметры канала измерения задаются для отдельного канала:
 - системные параметры задаются для US800 в целом.
- В режиме программирования не производятся измерения расхода и объема при действующих функциях измерения времен t_1 и t_2 (формулы 1, 2 пункта 1.3.1), разницы времен прохождения $\Delta t_{cp} = t_2 t_1$ (формулы 3,4).
 - 1.4 Средства измерений, инструменты и принадлежности
- 1.4.1 Для технического освидетельствования, выполнения работ по техническому обслуживанию US800 должны применяться следующие технические средства:
- установка для проверки электрической прочности изоляции с испытательным напряжением от 0,1 до 1,5 кВ синусоидальной формы, частотой 50 Гц, мощностью не менее 0,1 кВА с погрешностью установки испытательного напряжения не более 10%;
- мегомметр с верхним пределом измерения не менее 100 МОм, номинальным напряжением 100 В и основной погрешностью не более 30 %;
- частотомер электронно-счетный с верхним пределом измерения 5 МГц с основной погрешностью в пределах ± 0,1 %;
- вольтметр универсальный с диапазоном измерений 0 250 B с основной погрешностью в пределах ± 0,1%.
- 1.4.2 Для выполнения работ, связанных с изготовлением УПР на трубопроводе (при отсутствии готового УПР в комплекте US800) должны применяться следующие технические средства и приспособления:
 - штангенциркуль ШЦ-III400-0,1 ГОСТ 166-89;
- рулетка ЗПК2-10АНТ-1 ГОСТ 7502-89 с ценой деления 1 мм;
 - приспособление для приварки держателей AC801;
 - приспособление для доработки держателей AC802;

- приспособление для измерения базового расстояния между ПЭП – AC803;
- приспособление для измерения угла наклона ПЭП AC805.
 - 1.5 Маркировка
 - 1.5.1 На каждый УПР, вышедший из производства наносятся:
- номер трубы на фланце (или самой трубе) по системе предприятия-изготовителя;
 - условный диаметр на фланце;
 - маркер на держателе первого по потоку ПЭП;
 - 1.5.2 На каждый ЭБ наносятся:
- товарный знак или наименование предприятияизготовителя:
 - надпись «Сделано в России»;
 - исполнение электронного блока US800;
 - порядковый номер по системе предприятия изготовителя;
 - год изготовления;
- знак утверждения типа средств измерений по ПР 50.2.009 (только для US800, используемых в сферах государственного регулирования обеспечения единства измерений).
 - 1.6 Упаковка
- 1.6.1 ЭБ US800 упаковывается в потребительскую тару упаковочный ящик из картона.
- 1.6.2 При отправлении железнодорожным транспортом масса брутто не более 160 кг, габаритные размеры грузовых мест не более 1000x1000x1000. Транспортная тара дощатые ящики типов II-I, III-I, III-2 по ГОСТ 2991-85.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Эксплуатационные ограничения
- 2.1.1 US800 содержит встроенные цепи защиты от перенапряжений, перегрева и импульсных помех. Выполнение технических характеристик US800 гарантируется при соблюдении условий эксплуатации, указанных в настоящем документе.


Не рекомендуется питать US800 от электрической сети, в которой происходят частые коммутации силовых нагрузок или используются мощные преобразователи частоты.

В месте установки ЭБ не допускается концентрация агрессивных паров и газов.

УПР могут устанавливаться в вертикальные, горизонтальные и наклонные трубопроводы на восходящих потоках, не создают гидравлического сопротивления и не требуют установки фильтров в трубопровод.

Главными условиями корректной работы US800 являются полное заполнение сечения УПР жидкостью и достаточно равномерный профиль ее потока.

- 2.1.2 Для того, чтобы избежать возможных ошибок измерения и сбоев из-за присутствия газовых или воздушных включений, необходимо следовать следующим рекомендациям:
- на очень длинных горизонтальных трубопроводах установку УПР желательно осуществлять на участке, имеющем угол восхождения (рисунок 3,a);
- при подаче или вытекании жидкости самотеком установку УПР осуществлять в заниженной секции трубопровода (рисунок 3,6):
- избегать установки УПР в наивысшей точке трубопроводной трассы (рисунок 3,в);
- не устанавливать УПР на нисходящем участке трубопровода имеющего свободный слив жидкости в атмосферу (рисунок 3,г);
 - избегать установки УПР перед всасывающим насосом;
- при установке УПР плоскость ПЭП ориентировать горизонтально с допускаемыми отклонениями (рисунок 3,д).

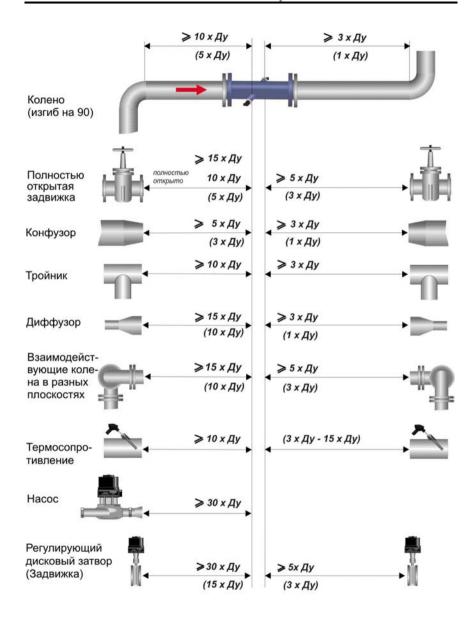
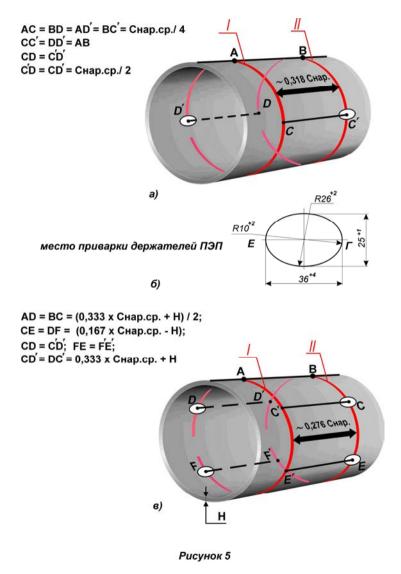


Рисунок 4

- 2.1.3 Внутренний диаметр трубопровода в месте установки не должен отличаться более чем на $\pm~5\%$ от фактического внутреннего диаметра УПР.
- 2.1.4 Наличие колен. задвижек, насосов, диффузоров и тройников могут искажать профиль течения жидкости, что влияет на погрешность измерения. Для того чтобы погрешности измерений находились В установленных пределах, рекомендуется устанавливать прямые участки трубопровода до и после УПР в соответствии с рисунком 4. В скобках приведены значения, до которых можно сокращать длины хымкап vчастков использовании двухлучевых УПР. Полностью полнопроходные шаровые краны не являются гидравлическим сопротивлением.
 - 2.2 Подготовка к использованию.
- 2.2.1 Распаковать US800. Проверить комплектность в соответствии с паспортом. ЭБ, УПР, ПЭП, кабели не должны иметь механических повреждений, ослабления механических креплений. Соединительные кабели должны быть свободно уложены в бухты и не иметь изломов.

Монтаж US800 включает в себя:


- изготовление УПР на трубопроводе (при поставке без УПР) или монтаж комплектного УПР;
 - монтаж и подключение ЭБ;
- 2.2.2 Изготовление УПР на трубопроводе осуществляется при поставке US800 без УПР по нижеследующей методике.

Выбрать участок трубопровода, на котором будут осуществляться измерения в соответствии с требованиями пункта 2.1 настоящего руководства. Места врезки ПЭП не должны совпадать со сварными швами и должны быть удалены на достаточное расстояние от стен и прочих препятствий, способных помешать дальнейшим работам.

Обеспечить в выбранном участке трубопровода отсутствие жидкости и остаточного давления. Очистить поверхность на предполагаемом для врезки участке от грязи, изоляции, покрытия и т.п. до металла.

2.2.2.1 Разметка однолучевого УПР на трубопроводе (Рисунок 5,а).

Измерить не менее 5 раз рулеткой длину окружности трубопровода на выбранном участке под УПР. Найти среднее значение длины окружности **Снар**.

Отметить точку **A** и провести через нее с помощью жесткого профиля, имеющего два плоскопараллельных ребра, линию параллельную оси трубопровода. На осевой линии отметить точку **B** отстоящей от точки **A** на расстоянии **0,318**×**Cнар.**

Провести через точки **A** и **B** с помощью гибкой металлической ленты (линейки, рулетки и т.д.) линии **I** и **II**, перпендикулярные пинии **AB**.

Измерить в сечениях I и II не менее 3 раз рулеткой длины окружностей и найти их средние значения C' нар.ср. и C'' нар.ср.

Проверить выполнение условия **0,99** ≤ (**C**′нар.ср. / **C**″нар.ср.) ≤ **1,01**. Если условие не выполняется, выбрать другой подходящий участок трубопровода.

Вычислить среднеарифметическое значение длины окружности:

Chap.cp. = (C'hap.cp. + C''hap.cp.) / 2.

Разметить точки **C**, **C'**, **D**, **D'** на расстоянии **Chap.cp / 4** от точек **A** и **B**.

Измерить с помощью штангенциркуля или рулетки расстояния **CC'**, **DD'**, **CD**, **C'D'** и проверить выполнение условий с точностью ± 2 мм:

```
| CC'| = | DD'| = AB,
|CD | = | C'D' |,
|C'D | = | CD' | = Снар.ср / 2.
```

Если хотя бы одно из условий не выполняется, то следует произвести разметку заново.

2.2.2.2 Разметка двухлучевого УПР на трубопроводе (рисунок 5в).

Измерить не менее 5 раз рулеткой длину окружности трубопровода на выбранном участке под УПР. Найти среднее значение длины окружности **Снар**.

Отметить точку **A** и провести через нее с помощью жесткого профиля, имеющего два плоскопараллельных ребра, линию параллельную оси трубопровода. На осевой линии отметить точку **B** отстоящей от точки **A** на расстоянии **0,276**×**Cнар**.

Провести через точки **A** и **B** с помощью гибкой металлической ленты (линейки, рулетки и т.д.) линии **I** и **II**, перпендикулярные линии **AB**.

Измерить в сечениях I и II не менее 3 раз рулеткой длины окружностей и найти их средние значения C'нар.ср. и C''нар.ср.

Проверить выполнение условия $0,99 \le (C'hap.cp. / C''hap.cp.) \le 1,01$. Если условие не выполняется, выбрать другой подходящий участок трубопровода под изготовление УПР.

Вычислить среднеарифметическое значение длины окружности:

Chap.cp. =
$$(C'hap.cp. + C''hap.cp.) / 2$$
.

Измерить толщиномером толщину стенки трубопровода в 3-х равномерно удаленных друг от друга точках в каждом из сечений *I* и *II*. Вычислить среднеарифметическое значение толщины стенки **H**

Отметить от точек **A** и **B** точки **D** и **C** соответственно, на расстоянии:

$$AD = BC = (0,333 \text{ Chap.cp.} + H) / 2.$$

Из точек **D** и **C** провести с помощью жесткого профиля линии параллельные оси трубопровода до пересечения с линиями сечений I и II. Точки пересечения отметить как D' и C' соответственно. Проверить выполнение условий с точностью \pm 1мм.

$$CD' = C'D = 0,333$$
 Chap.cp. + H;
 $CD = C'D'$.

Если хотя бы одно из условий не выполняется - разметку повторить.

Для разметки второго луча соответственно от точек ${\bf D}$ и ${\bf C}$ отметить точки ${\bf F}$ и ${\bf E}$ на расстоянии:

$$CE = DF = 0,167 \text{ Chap.cp.} - H.$$

Из точек **F** и **E** провести с помощью жесткого профиля линии параллельные оси трубопровода до пересечения с линиями сечений **I** и **II**. Точки пересечения отметить как \mathbf{F}' и \mathbf{E}' соответственно. Проверить выполнение условий с точностью \pm 1мм:

$$FE' = F'E = 0,333$$
 Chap.cp. + H;
 $FE = F'E'$.

Если хотя бы одно из условий не выполняется - разметку повторить.

2.2.2.3 Приварка держателей ПЭП.

Произвести разметку овалов, в соответствии с рисунком 56, совместив при этом центр О и ось ЕГ лекала с отмеченной точкой и линией разметки (по пп. 2.2.2.1 или 2.2.2.2). Допускается производить разметку мест приварки держателей при помощи трафарета, с размеченными заранее точками в зависимости от диаметра трубопровода по требованиям п.2.2.2.1, 2.2.2.2.

Вырезать отверстия в трубопроводе в местах разметки овалов. Обработать их - зачистить кромки, удалить окалину, снять заусенцы.

Приварку держателей ПЭП на трубопровод производить в соответствии с рисунком 6 при помощи приспособления для сварки (штанга определенной длины с гайками и шайбами), которое обеспечивает требуемое взаимное расположение держателей относительно друг друга.

Штангу изготовить из углеродистой стали. Штанга должна быть ровной и отшлифованной. Производить работы с изогнутой штангой не допускается. Длину штанги определить в зависимости от диаметра трубопровода и угла врезки датчиков. Конкретная ее длина выбирается из таблицы 9.

Таблица 9

Условный диаметр трубопровода, мм	Длина направляющей штанги, мм
250	750
300	820
400	960
500	1100
600	1240
700	1430
800	1550
1000	1780
1600	2600
1800	3000

Доработать опорную поверхность держателей ПЭП в соответствии с образующей поверхностью трубопровода, на котором будет произведен монтаж.

Для более точной приварки держателей на их наружную цилиндрическую поверхность нанести осевые риски, соответствующие точкам пересечения большой и малой осей эллипса.

Схема приварки держателей ПЭП к трубопроводу

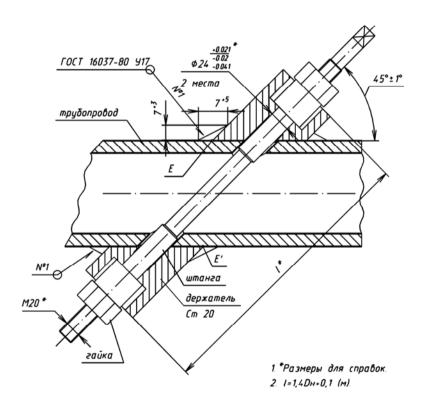
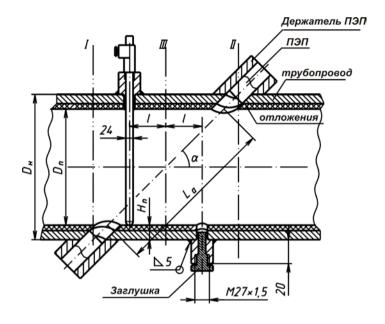


Рисунок 6

Установить держатели на штангу, совместив нанесенные риски на держателе с линиями разметки трубопровода (п.2.2.2.1 или 2.2.2.2) и закрепить их гайками.

Прихватить сваркой держатель в точке Е. Провернуть штангу вокруг своей оси, откорректировать угол наклона штанги. Прихватить сваркой другой держатель в точке Е'. Далее процесс поочередной прихватки каждого держателя произвести в четырех диаметрально противоположных точках (крестообразно). После прихватки в каждой точке делать паузу для остывания металла в местах сварки. Повторить такую операцию на каждом держателе в промежуточных диаметрально противоположных четырех точках, делая выдержку с целью остывания металла.


Убедившись в правильности предварительной сварки приступить к окончательному привариванию шва, постоянно совершая колебательно-вращательные движения штанги вокруг своей оси для устранения возможных перекосов.

Доработать с помощью развертки отверстие диаметром $24^{+0,021}$ в каждом из держателей до диаметра $24^{+0,13}$ мм.

Измерить суммарную толщину стенки трубопровода, отложений Hn и рассчитать внутренний диаметр трубопровода $\textbf{\textit{D}}_{\textit{внуттр}}$ по методике части 3 настоящего руководства. Для этого рекомендуется вварить гильзы в зоне установки $\Pi \ni \Pi$ по двум взаимно перпендикулярным направлениям в соответствии с рисунком 7. После измерений гильзы закрыть заглушками на резьбе.

Для контроля правильности выполнения работ измерить по методике части 3 настоящего руководства по эксплуатации:

- смещение оси акустического канала относительно центральной оси трубопровода χ;
 - угол наклона оси акустического канала;
 - базовое расстояние между ПЭП L_Д.

1 I=0,5DH-0,06 (M)

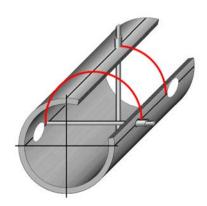


Рисунок 7

2.2.3 Монтаж готового УПР осуществляется по нижеследующей методике.

Выбрать участок трубопровода на котором будут осуществляться измерения и установка УПР в соответствии с рисунками 3 и 4. Обеспечить в выбранном участке трубопровода отсутствие жидкости и остаточного давления.

Разметить и вырезать на трубопроводе участок в месте установки УПР.

Оценить по вырезанному участку трубопровода состояние его внутренней поверхности (отложения, степень коррозии). Измерить внутренний диаметр $\boldsymbol{D}_{\text{енутр}}$ с учетом отложений. Проверить выполнение условия:

$$| D_{\text{внутр}} - D_{\text{внутр}}' | \le 0.05 D_{\text{внутр}}'$$

где $\mathbf{D}'_{\mathit{внутр}}$ - внутренний диаметр УПР,

D_{внутр} - внутренний диаметр трубопровода.

Если условие не выполняется, то следует очистить трубопровод от наслоений или вварить отрезки новой трубы на длину не менее 10 * Ду по потоку до места установки УПР и 5 * Ду после.

Расточить посадочные отверстия ответных фланцев по измеренному размеру с учетом зазора для сварки. Одеть их на концы трубопровода, не приваривая.

Установить УПР в трубопровод и стянуть болтами с ответными фланцами (предварительно установив между фланцами прокладки из комплекта поставки). Сделать отметки мелом на трубопроводе для приварки фланцев к трубопроводу.

Снять УПР.

Приварить ответные фланцы к трубопроводу по отметкам.

Установить УПР в трубопровод, проложив прокладки между фланцами, и равномерно стянуть их болтами из комплекта поставки. Уплотнительные прокладки не должны выступать во внутреннюю полость трубопровода.

2.2.4 ЭБ закрепить на опорной поверхности в вертикальном положении. Место установки ЭБ оборудовать двухполюсной розеткой, подключенной к сети однофазного переменного тока напряжением 220 (+22; -33) В.

Если питающее напряжение сети может выходить за рамки (187-242) В, то рекомендуется подключать ЭБ к питающей сети через источник бесперебойного питания. Схема внешних подключений ЭБ приведена в приложении Б.

Для защиты от возможных повреждений кабели рекомендуется прокладывать в трубах, кабельных каналах или коробах. Перед прокладкой кабелей убедиться в отсутствии внешних повреждений. Сигнальные кабели от каждого УПР необходимо прокладывать отдельно друг от друга и от силовых для уменьшения влияния электромагнитных помех.

Присоединить кабели в соответствии с маркировкой к ПЭП.

Проверить отсутствие электрического контакта (короткого замыкания) между оплеткой и центральной жилой кабеля на стороне разъема к ЭБ. При наличии короткого замыкания ЭБ покажет отказ.

2.2.5 Опробование

- 2.2.5.1 Заполнить трубопровод в месте установки УПР водой и провести опрессовку пробным давлением 1,5 P_{pa6} для данного трубопровода. Визуально проверить герметичность сварных швов и соединений. При обнаружении течи во фланцевых соединениях УПР с трубопроводом, подтянуть гайки на болтах до её устранения.
- 2.2.5.2 Включить ЭБ в сеть питания. Через время не более 30 секунд после включения питания US800 должен перейти в режим работы.

Убедиться в работоспособности US800 по комбинациям световых сигналов светодиодов «НОРМА» и «ОТКАЗ» и цифровой индикации.

Зеленый светодиод «НОРМА»										
СОСТОЯНИЕ	СОСТОЯНИЕ КАНАЛОВ ИЗМЕРЕНИЯ									
Горит ровным светом	оба канала работоспособны									
Мигает с частотой 1 раз в секунду	работоспособен 1-й канал									
Мигает с частотой 5 раз в секунду	работоспособен 2-й канал									
Не горит	каналы не работоспособны									

Красный светодиод «ОТКАЗ»								
состояние	СОСТОЯНИЕ КАНАЛОВ ИЗМЕРЕНИЯ							
Горит ровным светом	Выбранные каналы неработоспособны							
Мигает	Частота мигания соответствует частоте сбоев по выбранному каналу							

- 2.3 Использование US800
- 2.3.1 При использовании US800 оперативное управление индикацией осуществляется при помощи кнопки «РЕЖИМ».
- 2.3.1.1 Схемы управления индикацией электронного блока US800 в зависимости от исполнений приведены в приложениях B1 и B2.
- 2.3.1.2 Формат одновременного представления текущих расходов в м³/ч, измеряемых каждым каналом в двухканальном исполнении, имеет вид:

Формат представления текущего расхода в м³/ч при просмотре в каждом канале по отдельности имеет вид:

2.3.1.3 Формат представления текущего расхода для двухлучевого исполнения имеет вид:

На индикатор выводится среднее из измеренных значений текущего расхода по каждому лучу (каналу). При отказе одного из лучей (канала) выводится значение исправного.

2.3.1.4 В зависимости от показателя степени программируемого параметра «Шкала», вес младшей единицы числа, характеризующего расход жидкости, будет меняться в соответствии с таблицей 10.

Таблица 10

Показатель степени шкалы измерения	Вес младшей единицы, м ³ /ч при одновременной индикации обеих расходов	Вес младшей единицы, м ³ /ч при индикации выбранного расхода
5	10	1
4	1	0,1
3	0,1	0,01
2	0,01	0,001
1	0,001	0,0001

2.3.1.5 Просмотр значений накопленных объемов по каждому каналу измерения осуществляется следующим образом.

Длительным (не менее 3 секунд) нажатием кнопки «РЕЖИМ» вывести на индикацию нужный канал измерения — текущее значение расхода в этом канале. После этого кнопку отпустить.

Кратковременно нажать кнопку «РЕЖИМ». При этом на индикаторе на время 1-2 секунды предварительно появится надпись *ОБ 1* или *ОБ 2* (в зависимости от выбранного канала) свидетельствующая о переходе в окно индикации объема, потом постоянное отображение накопленного объема в м³.

2.3.1.6 В зависимости от показателя степени программируемого параметра «Шкала», вес младшей единицы числа, характеризующего объем жидкости, будет меняться в соответствии с таблицей 11.

Таблица 11

Показатель степени шкалы измерения	Формат числа на индикаторе	Вес младшей единицы, м ³
5	XXXXXXXX	10
4	XXXXXXXX.	1
3	X.X.X.X.X.X.X	0,1
2	X X X X X X X X	0,01
1	X X X X X X . X X X	0,001

Если в процессе эксплуатации возникает необходимость изменить показатель степени шкалы измерения, ДЛЯ vчета необходимо подсчет объема корректности завершить жидкости при прежней шкале, только после И перепрограммирования шкалы начать учет с существующего значения, приняв его за начальный уровень.

2.3.1.7 Для перехода в окно индикации времени наработки из окна индикации объема - кратковременно нажать кнопку «РЕЖИМ». Переход в окно индикации времени наработки сопровождается предварительным появлением на индикаторе в течение 1-2 секунд надписи ВРЕ_НАР_1 или ВРЕ_НАР_2 (в зависимости от выбранного канала), потом постоянное отображение времени наработки в часах:

Отсчет значений времени наработки в энергонезависимой памяти, а также их вывод на индикатор производится каждые 6 минут. В приведенном выше примере время наработки составляет 28 часов 30 минут.

При горящем светодиоде «ОТКАЗ» время наработки не вычисляется!

2.3.1.8 Следующее нажатие кнопки приводит к выводу диагностической информации. Установление окна индикации диагностики сопровождается предварительным появлением на индикаторе в течение 1-2 секунд надписи **duAFH**, потом постоянное отображение в кодированном виде состояния каналов измерения, последовательной связи по RS485. Формат окна диагностики имеет следующий вид:

Последующее нажатие кнопки **«РЕЖИМ»** вернет индикацию на отображение текущего расхода в выбранном канале измерения.

- 2.3.2 Программируемые параметры электронного блока
- 2.3.2.1 Ввод или изменение программируемых параметров осуществляется в следующих случаях:
- при поставке US800 в комплекте без УПР (изготовление УПР осуществляется на трубопроводе) или без кабеля;
- при необходимости изменения диапазонов выходных сигналов, отображения информации на индикаторе;
- при определении коэффициента коррекции на месте эксплуатации;
 - при проведении поверок.

Ввод программируемых параметров осуществляется с помощью клавиатуры на лицевой панели ЭБ.

2.3.2.2 Параметры каналов измерения и их назначение приведены в таблице 12.

Таблица 12

Номер параметра		мат икат			обра	эжен	RNH		на
1.1 Время прохождения УЗ импульсов по потоку, мкс.	1.	1		X	X	X	X	X	X
1.2 Время прохождения УЗ импульсов против потока, мкс.	1.	2		X	X	X	X	X	X
1.3 Полусумма времен про- хождения УЗ импульсов по потоку и против потока, мкс.		3		X	X	X	x	X	x
1.4 Разность времен прохождения УЗ импульсов по потоку и против потока, мкс.		4		X	X	X	X	X	X
2. Шкала, м³/ч. Максимальное значение измеряемого расхода, для которого частотный и токовый сигналы принимают верхние значения своего диапазона	2			X	X	X	X		Y
3. Внутренний диаметр УПР или трубопровода в месте установки ПЭП, м.			-	Х	Χ	Х	x		Y
4. База датчиков Расстояние между излучающими торцами ПЭП, м.	4		•	X	x	X	X		Y

Продолжение таблицы 12

5.Уровень отсечки в % от									
установленной шкалы	5			X	Х				
при расходах ниже уровня				-	-	İ			
отсечки обнуляются		!				!	!		
частотный, токовый выходы,									
индикатор и не накапливается	0,	1; 0,	2; 0	,4; (,8;	1,5;	3; 6	;13;	26
значение объема.							•		
По умолчанию - 0,2%									
6. Постоянная времени ус-		!			:	:	!		
реднения измерения, с									
0,02; 0,04; 0,06; 0,08; 0,15; 0,3;	6		X	Χ	Χ	į	į		
0,6; 1,3; 2,6; 5; 10; 20; 40; 80.		: :			:	:	:		
По умолчанию - 20с.					:	:	!		
,	7		9	Y	Y	Y	Х	Y	Y
	'		3	^	^	^	^	^	^
7. Смещение нуля	S.	- прі	13H2	ik:					
измерительного канала, нс	0 - положительное смещение								
'	1 -	- отр	ица	тель	ьное	сме	еще	ние	
Контроль выходных									
сигналов:									
B HOUGH HOM TOURS THOROUGH	8	;			0				
в начальной точке диапазона	0				U				
в 1/4 диапазона		:			:	:	:		
$I_{BHX} = (I_{max} - I_0)/4 \text{ MA};$	8				1				
F _{вых} = 250 Гц									
в 1/2 диапазона									
$I_{\text{вых}} = (I_{\text{max}} - I_0)/2 \text{ MA};$	8				2		!		
F _{вых} = 500 Гц									
в 3/4 диапазона									
$I_{Bbix} = 3 \cdot (I_{max} - I_0)/4 \text{ MA};$	8				3		!		
F _{вых} =750 Гц	"								
		!							
в конечной точке диапазона	8				4				

Продолжение таблицы 12

О Плино кобола в мотрох		!	!	!	!	!		!	
9. Длина кабеля в метрах,									
соединяющего каждый ПЭП с	9		-	X	X	Х	Х	:	Υ
ЭБ.		!	!	! ! !	! !	!		!	!
0. Коэффициент коррекции	0			x	x	x	x		Y
out Диапазон токового вы- хода , mA		u	t			x	x	x	X
t1 Калибровочный коэф-				-	-				-
фициент токового выхода в	t	1	:		X	X	X	X	X
начале диапазона									! !
t2 Калибровочный коэф-									
фициент токового выхода в	t	2			X	X	X	X	X
конце диапазона									
F1 Вес импульса – целая									
часть	F	1	:		X	X	X	X	X
литров / импульс									
					-				
F2 Вес импульса – дробная	F	2				X	Х	X	X
часть		! !	! !			! !		! !	! ! !
Пи V V	. Λ.	\						4 O -	

Примечание: X – цифра от 0 до 9; Y- показатель степени 10 в формате записи числа 0.XXXX • 10^Y

2.3.2.3 Системные параметры и их назначение приведены в таблице 13.

Таблица 13

Формат отображения на										
Параметр			Формат отображения на							
			индикаторе							
A Aдрес US800		Α		<u> </u>			<u> </u>	Х	Х	Х
С Скорость последовательной передачи в сети RS485, бод (после изменения скорости обмена необходимо сделать перезапуск ЭБ US800)					x	x	x	x	x	x
d Окно - минима	•	d				Х	X	Х	Х	X
распространения УЗ импульсов для обеспечения помехоустойчивости			умо	ично олча етст	аник	- 2	Омк	2		35
РЕ. Режим работ	ъ ЭБ									
Тип используе-	ПЭП 3-4	Р	Ε			0				
мого датчика	ПЭП 6-3	Р	Ε			1				
	включен постоянно	Р	E	! !			1			
Цифровой индикатор	Отключается через 5 мин после последнего обращения	P	E				0			
Двухканальное	Включено	Р	Е					1		
исполнение	Отключено	Р	Ε					0		
	Включены	Р	Е						0	
Выходы ЭБ	Отключаются при реверсе	Р	E						1	
	по модулю	Р	Ε							0
Режим работы счетчика объема	только в од- ном направлении	P	E							1
	реверсивный	Р	Ε							2

2.3.3 Порядок программирования

2.3.3.1 Вывести на индикацию в режиме работы с помощью кнопки «РЕЖИМ» канал, для которого необходимо ввести программируемые параметры. Перевести ЭБ в режим программирования длительным (не менее 3 секунд) нажатием кнопки «ВВОД».

Об установлении режима программирования свидетельствует появление на индикаторе параметра **«Временные интервалы»**.

Переход от установленного параметра к следующему осуществляется последовательно нажатием кнопки «ВВОД», при этом происходит запоминание установленного параметра, но не его сохранения в энергонезависимой памяти!!! Поэтому, при отключении в режиме программирования питания или нажатии кнопки «СБРОС», программируемые параметры принимают значения, установленные в предыдущих режимах программирования!

Выход из режима программирования возможен нажатием кнопки «СБРОС» если не требуется сохранения вновь введенных параметров – в основном после просмотра параметра «Временные интервалы» или из параметра «Контроль выходных сигналов».

Чтобы изменить значение программируемого параметра используются кнопки «⇒» и «⊕»:

кнопкой «⇒» выбирается разряд параметра. Выбор разряда подтверждается его миганием;

кнопкой «①» осуществляется изменение цифры выбранного разряда.

2.3.3.2 В окне параметра «Временные интервалы» отображаются измеряемые каналом времена прохождения ультразвуковых импульсов. Просмотр значений внутри параметра осуществляется нажатием кнопки «Ф». Для примера, ниже приведены значения этих параметров при подключении ЭБ к технологическому УПР с базовым расстоянием между датчиками 205,13 мм и температурой воды 21,9 °C.

время распространения по потоку в мкс

время распространения против потока в мкс

среднее время распространения в мкс (полусумма времен прохождения УЗ импульсов по потоку и против потока

разность между временами прохождения УЗ импульсов по потоку и против потока в мкс

Параметр **1.3** - (t_1 + t_2)/2 может служить для определения базы датчиков (расстояния между торцами ПЭП) по формуле 6, если известна температура жидкости и скорость ультразвука в ней при нулевом расходе в УПР.

По параметру 1.4 можно определить:

смещение нуля в канале, при остановленном потоке жидкости через УПР;

ориентировочно расход в УПР с известными параметрами, если до этого была проведена автоматическая компенсация нуля или известно значение смещения нуля.

2.3.3.3 При выпуске US800 в комплекте с УПР параметр «**Шкала»** устанавливается в соответствии с картой заказа. При отсутствии карты заказа программируемый параметр **«Шкала»** устанавливается в зависимости от диаметра УПР по таблице 14.

Максимальный расход, отображаемый на индикаторе, может превышать значение, установленное в параметре **«Шкала»**, не более чем на 20%.

Таблица 14

Условный диаметр УПР, мм	Программируемая шкала, м³/ч	Максимально отображаемый на индикаторе расход, м ³ /ч
15	5	6,0000
25	8	09,600
32	30	36,000
40	45	54,000
50	70	84,000
65	120	144,00
80	180	216,00
100	280	336,00
150	640	768,00
200	1100	1320,0

Параметр «**Шкала»** влияет только на отображение расхода на индикаторе и на выходные сигналы (частотный, токовый). От параметра «**Шкала»** не зависят диапазоны измерения расхода, приведенные в таблице 1. Ниже приведен пример установки параметра «**Шкала»** значением в **120 м³/ч**.

2.3.3.4 Параметр **«Внутренний диаметр УПР»** определяет площадь сечения в плоскости прохождения ультразвуковых импульсов между ПЭП. Неверно введенное значение или значение не соответствующее установленному УПР влияет на погрешность измерения расхода. Ниже приведен пример установки значения внутреннего диаметра равного **51,34 мм**.

2.3.3.5 Параметр **«База датчиков»** служит для определения скорости течения жидкости через сечение внутреннего диаметра УПР. Неверно введенное значение или значение не соответствующее установленному УПР влияет на погрешность измерения расхода. Ниже приведен пример установки значения базы датчиков равного **1012,5 мм**.

2.3.3.6 Параметр **«Длина кабеля»** учитывает время задержки ультразвуковых импульсов в высокочастотных кабелях от ЭБ к ПЭП. Ошибка при вводе (измерении) длины кабеля допускается \pm 3 м. Ниже приведен пример установки значения длины кабеля **25 м** (к одному из ПЭП).

- 2.3.3.6 Параметр «Коэффициент коррекции» характер течения жидкости В УПР И пэп расположение (ультразвукового луча) относительно сечения. может определяться (уточняться при необходимости для минимизации погрешности в определенной точке или интервале диапазона измеряемого расхода):
- на основе данных, полученных путем пропуска известного объема жидкости через УПР по методике документа «Расходомерсчетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001PЭ. Часть 2»;
- расчетным путем по данным геометрических размеров однолучевого УПР, состояния его внутренней поверхности и свойств измеряемой жидкости по методике документа «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001РЭ. Часть 3»;

- для двухлучевого исполнения (измерение по хордам в УПР) коэффициент коррекции программируется равным 1,1547*tgα (угла наклона ПЭП к оси трубопровода) при соблюдении требований пункта 2.2.2.2 настоящего руководства.
- 2.3.3.7 Системные параметры устанавливаются из режима программирования первого канала. После установки параметра **«Коэффициент коррекции»** нажатие кнопки «ВВОД» открывает последовательно параметры:
 - «Адрес»;
 - «Скорость передачи»;
 - «Окно»,
 - «Режим работы».

Параметр **«Окно»** служит для увеличения помехоустойчивости каналов измерения. Окно блокирует приемный тракт на время распространения ультразвукового импульса:

окно = 0,7
$$\frac{L_{\mathcal{I}}}{C \max}$$
 , (7)

где $\;L_{{\scriptscriptstyle I\hspace{-.07em}I}}\;$ - расстояние между торцами ПЭП;

 $C \max$ - максимальная скорость ультразвука в измеряемой жидкости.

По умолчанию устанавливается 20 мкс.

Внимание!!! Изменение этого параметра рекомендуется в исключительных случаях, когда не удается добиться стабильной работы исправного канала измерения на фоне очень сильных помех.

- 2.3.3.8 После установки или просмотра последнего параметра из списка (таблицы 12, 13) при нажатии кнопки «ВВОД» осуществляется переход из режима программирования в режим работы с записью программируемых параметров в энергонезависимую память. Процесс записи сопровождается надписью "ПРОГ".
- 2.3.3.9 ри вводе недопустимых значений параметров после завершения программирования включается мигающая цифра "3". В этом случае следует внимательно проконтролировать ранее введенные значения и внести корректировку.

- 2.3.4 Задание режима работы частотного/импульсного выхода.
- 2.3.4.1 По умолчанию установлен частотный выход с частотой следования импульсов пропорционально текущему расходу в диапазоне 0 -1000 Гц.
- 2.3.4.2 Чтобы перевести частотный выход в режим формирования импульсов соответствующего веса следует установить параметры **F1** и **F2** из таблицы 12.

Пример: Требуется иметь на выходе импульсы с весом 1,5 л, тогда:

Чтобы перевести выход обратно в частотный режим следует установить в **F1** и в **F2** нулевые значения.

В общем случае вес импульса можно рассчитать по формуле $\mathbf{B}_{\mathsf{имп}} = \mathbf{Q}_{\mathsf{max}}$ / $\mathbf{3,6^*f}_{\mathsf{max}}$, где $\mathbf{Q}_{\mathsf{max}}$ – максимальный расход, указанный в параметре 2 «Шкала», м³/ч; $\mathbf{f}_{\mathsf{max}}$ – максимальная частота частотного / импульсного выхода, Гц.

2.3.5 Калибровка токового выхода.

Во всех US800, выпускаемых из производства, токовые выходы откалиброваны.

Если в процессе эксплуатации, а также при проведении очередной поверки возникает необходимость более точной подстройки, то существует возможность калибровки на месте. Это осуществляется следующим образом.

2.3.5.1 Установить в параметре **«out»** требуемый диапазон изменения токового сигнала.

Подключить в соответствии с схемой приложения Б к токовому выходу миллиамперметр. Выдержать ЭБ во включенном состоянии не менее 30 минут.

- 2.3.5.2 Вывести на индикацию параметр **t1**. Считать значение тока с миллиамперметра и установить его в параметре **t1**.
- 2.3.5.3 Нажать кнопку «ВВОД» и перейти к параметру **t2**. Считать значение тока с миллиамперметра и установить его в параметре **t2**.

- 2.3.5.4 Выйти из режима программирования через процесс записи "*ПРОГ*".
- 2.3.5.5 Проконтролировать значения сигнала на токовом выходе в окне параметра **«Контроль выходных сигналов»**.
- 2.3.6 Автоматическая компенсация смещения нуля измерительного канала.

Нулевое смещение вызвано асимметрией измерительных трактов канала. Для исключения его влияния на значения измеряемого расхода необходимо выполнить корректировку канала на нулевой расход.

Внимание!!! При проведении автоматической компенсации нуля течение жидкости через УПР должно отсутствовать!

Для двухлучевого исполнения автоматическая компенсация нуля проводится для каждого измерительного канала по отдельности!

Нажать кнопку «⇒» до появления в крайнем левом разряде цифрового индикатора цифры 0, свидетельствующей о переходе в режим автоматической компенсации.

Нажать кнопку «⇒», крайний левый разряд цифрового индикатора должен поменять значение с 0 на 1. Процесс выполнения автоматической компенсации индицируется постепенным заполнением индикатора цифрой "1".

После окончания данного процесса ЭБ автоматически переходит в режим измерения. Выждать 40-60 секунд до установки значения измеряемого расхода на цифровом индикаторе. Если значение измеряемого нулевого расхода отличается от нуля, то провести автоматическую компенсацию смещения нуля повторно.

Число, компенсирующее смещение нуля, можно посмотреть или изменить при необходимости в параметре «Смещение нуля».

Автоматическую корректировку смещения нуля необходимо проводить при замене УЗ датчиков в УПР, при замене ЭБ US800 или УПР. Новое значение смещения нуля записывается в паспорт на US800 и заверяется подписью и штампом (поверительным клеймом) лица, аккредитованного в области обеспечения единства измерений.

2.3.7 Подключение US800 в сеть RS485, протокол обмена и доступные для считывания по последовательному интерфейсу параметры в соответствии с приложением Д.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

US800 не требует технического обслуживания, кроме периодического осмотра с целью контроля работоспособности.

3.2 Меры безопасности

Эксплуатация US800 разрешается при наличии инструкции по технике безопасности, утвержденной предприятием — пользователем в установленном порядке.

Источниками опасности при монтаже и эксплуатации US800 являются электрический ток и измеряемая жидкость.

Ремонтные работы допускается производить только при отключенном напряжении питания. При проведении ремонтных работ связанных с заменой ПЭП или УПР, в трубопроводе обеспечить отсутствие жидкости находящейся под давлением.

4. HOBEPKA US800

4.1 US800, предназначенные для применения в сферах государственного регулирования обеспечения единства измерений, подлежат первичной и периодической поверкам. Поверку осуществляют лица, аккредитованные в области обеспечения единства измерений согласно указаниям ПР 50.2.006-94:

исполнения R – по документу «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001PЭ. Часть 2»;

исполнения Р - по документу «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации US800.421364.001PЭ. Часть 3».

US800 **исполнения N** проходят калибровку по документам:

«Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации. US800.421364.001PЭ. Часть 2, Часть 3»;

- 4.2 Межповерочный интервал 4 года.
- 4.3 **Исполнения R** и **P** заверяются в паспорте на US800 подписью и штампом (личным клеймом) лица, аккредитованного в области обеспечения единства измерений.

5. ТЕКУШИЙ РЕМОНТ

5.1 Перечень возможных неисправностей возникающих после монтажа или во время работы приведен в таблице 15.

Таблица 15

Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Метод устранения		
При включе- нии ЭБ в сеть отсутствует	Напряжение ниже или превышало норму	Проверить напряжение на питающих проводах		
свечение светодиодов и цифрового дисплея.	Неисправен сетевой шнур	Заменить шнур		
110000	Нет соединения кабеля с ПЭП.	Проверьте пра- вильность и надеж- ность подключений		
US800 не входит в режим измерения, горит красный	Короткое замыкание токоведущей жилы кабеля с оплеткой	Устранить замыкание или заменить кабель		
светодиод «ОТКАЗ» на лицевой пане- пи ЭБ	Нет жидкости в трубопроводе или в жидкости слишком большая концентрация воздуха (газа)	Проверить наличие жидкости в трубопроводе и условия ее течения.		
	Неисправны ПЭП или на ПЭП присутствуют отложения	Заменить комплект ПЭП, почистить ПЭП		

5.2 Если перечисленные в таблице 15 методы не приводят к устранению неисправности, US800 подлежит ремонту, замене на предприятии – изготовителе или его сервисном центре. Ремонт по гарантии осуществляется в течение 18 месяцев с момента ввода в эксплуатацию, но не более 24 месяцев со дня изготовления.

Адрес предприятия – изготовителя: Россия, Чувашская Республика, 428017 г. Чебоксары, ул. Гузовского, 13 А E-mail: us800@mail.ru т/ф. (**8352**) **45-81-12**.

6. ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

6.1 Транспортирование US800 осуществляется в упаковке обеспечивающей его сохранность и может производиться любым видом крытого транспорта на любое расстояние без ограничения скорости.

Транспортирование на самолетах должно производиться только в отапливаемых герметизированных отсеках.

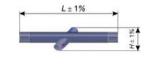
Срок пребывания US800 в условиях транспортирования не более 45 суток.

6.2 При получении US800, упакованных в ящики, следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией в транспортную организацию.

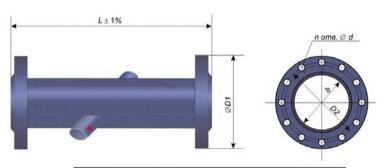
US800 после транспортирования в условиях, не соответствующих условиям эксплуатации, необходимо выдерживать в помещении с нормальными условиями не менее 3 часов, только после этого произвести распаковку.

6.3~ US800 должен храниться в сухом отапливаемом и вентилируемом помещении при температуре окружающего воздуха от +5~ до +40~ °C и относительной влажности от 30 до 80 %. Воздух в помещении не должен содержать пыли и примеси агрессивных паров и газов.

7. УТИЛИЗАЦИЯ


US800 не содержит драгоценных металлов и других веществ подлежащих обязательной утилизации.

US800 не представляет опасности для жизни, здоровья людей и окружающей среды после окончания срока службы (эксплуатации) и может подлежать утилизации по технологии, принятой на предприятии, эксплуатирующем US800.


ПРИЛОЖЕНИЕ А 188 (*148) 4 отв. Ø 5 1500 тах 200 (*160)

Разъем XS2 отсутствует в исполнениях 1x

* - размер соответствует ЭБ US800 в корпусе уменьшенного типоразмера

Исполнение УПР	Габаритные разм	Материал		
	L	Н	mamopaan	
Ду 15	270	110		
Ду 25	360	140	12X18H10T	

Фланец по ГОСТ 12820-80	Габар	Материал						
Исполнение УПР	D1	D2	L	b	d	n	материал	
Ду 32	135	100	370					
Ду 40	145	110	370					
Ду 50	160	125	300		18	4		
Ду 65	180	145	330			- 68	12X18H107	
Ду 80	195	160	330				1221011101	
Ду 100	215	180	370				1	
Ду 150	280	240	400	24	00	8		
Ду 200	335	295	462	8	22			
Ду 250	405	355	650	факт.		12	12	
Ду 300	460	410	700	4	26	,		
Ду 350	520	470	750		-	40		
Ду 400	580	525	800		30	16		
Ду 500	710	600	900		33	20	CT20	
Ду 600	840	770	1000			20	0120	
Ду 700	910	840	1100		36		1	
Ду 800	1020	950	1200		00	24		
Ду 900	1120	1050	1300		39		ľ	
Ду 1000	1255	1170	1400		45	28	l.	
Ду 1200	1485	1390	1600		52	32		
Ду 1400	1685	1590	1800					

ПРИЛОЖЕНИЕ Б

Исполнения и схема внешних подключений основных исполнений ЭБ US800

(цепи внешних подключений других исполнений указаны в приложениях Г1 - Г4)

		Частотный/ импульсный выход	Токовый выход 4-20 mA	Цифровой последовательный интерфейс
Исполнени	е ЭБ			
	10	•		
одноканальный	11	•		•
одпоканальный	12	•	•	
	13	•	•	•
	20	•		
двухканальный	21	•		•
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22	•	•	
	23		•	•
	30	•		
	31	•		•
двухлучевой -	32	•	•	
	33	•	•	•

Разъем ПЭП								
Конт. Цепь								
1	сигн.ПЭП							
⊕	общ. ПЭП							

XS1,XS2						
Исполнение	Конт	Цепь				
1x	1	сигн.ПЭП1				
2x	2	общ. ПЭП1				
-	6	сигн. ПЭП2				
3x	7	общ. ПЭП2				

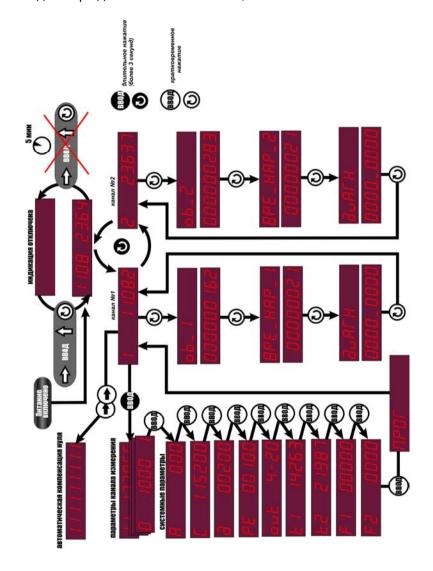
•	,	-	-
2	τ	5	.5

litera.	Конт.	Цепь	Назначение
ž	1	f+	Частотный/
льнь евой	2	f-	импульсный выход
JTP IGB	3	U.	U-48
одноканальный и двухлучевой	4		Цифровой последовательный
	5		интерфейс
дно дву)	6	+i	Токовый
0	7	-i	выход

XS3

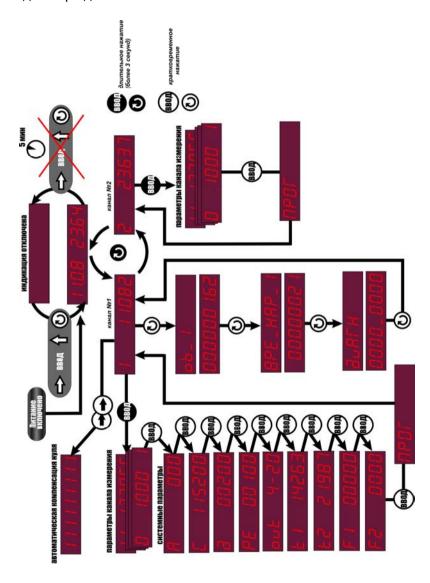
STATE	Конт.	Цепь	Назначение
НЫЙ	1	+	Выход Ч/И или токовый
	2	-	I канал
5	3		11-15
двухкана	4		Цифровой последовательный
	5		интерфейс
	6	+	Выход Ч/И или токовый
	7		ІІ канал

Подключение цепей интерфейса


RS-485 Конт. Цепь 3 Data+ 4 Data-5

K3-232						
Конт.	Цепь					
3	TxD					
4	RxD					
5	GND					

	Конт.	Цепь	Назначение
	1	+f	Ч/И выход 1 канал
	2	Общ	ий ч/и выходов
22	3	+f	Ч/И выход II канал
17.7	4	+1	Токовый выход II
	6	Общий G	ND токовых выходов
1	7	+1	Токовый выход I


ПРИЛОЖЕНИЕ В1

Структурная схема отображения информации на индикаторе для исполнений ЭБ 1x, 2x

ПРИЛОЖЕНИЕ В2

Структурная схема отображения информации на индикаторе для исполнений ЭБ 3х

ПРИЛОЖЕНИЕ Г1

Исполнение ультразвукового расходомера US800 с каналом измерения унифицированных сигналов силы постоянного тока 4-20 (0-5, 0-20) мА.

ЭБ US800, кроме измерения расхода по первому каналу, обеспечивает преобразование по универсальному аналоговому каналу (2-ой канал) измерения сигналов преобразователей давления в соответствии с формулой:

$$P = P_B (I - I_H) / (I_B - I_H),$$

где Р - показания на индикаторе давления, МПа;

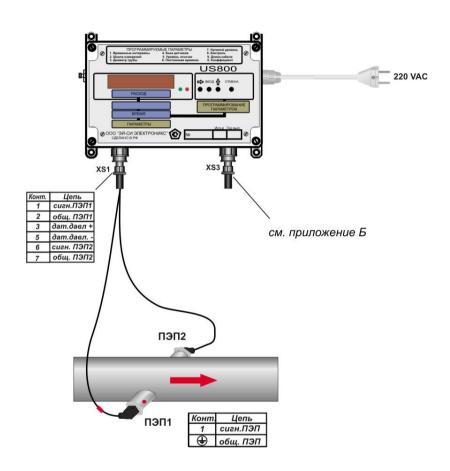
Рв- верхний предел измерения давления, МПа;

I_B ,I_H - верхний и нижний пределы сигнала с преобразователя давления, мА;

I - текущее значение сигнала с преобразователя давления, мA.

Предел относительной погрешности измерения сигналов 4-20 (0-5, 0-20) мА с преобразователей давления \pm 0,4%.

Настройки прибора на ввод аналогового токового сигнала производятся в 2-ом канале в соответствии со следующей таблицей


Номер параметра	Формат отображения на индикаторе								
1.1 Усредненный код АЦП аналогового токового входа;	1.	1		x	x	x	x	x	x
1.2 Вычисленное значение аналогового тока, мА;	1.	2		x	х	х	x	X	x

		,	,		,				,
1.3 Вычисленное значение		!	:						
физической величины в абсолютных	1.	3		X	X	X	X	X	X
значениях (мгновенное);									
1.4 Вычисленное значение		-	-						
физической величины в абсолютных	1.	4		Х	Х	X	X	X	X
значениях (усреднённое);									
2. Максимальное значение									
физической величины									
соответствующая максимальному	2			X	X	X	X		Υ
значению тока выбранного									
диапазона (0-5, 0-20 или 4-20).									
3. Минимальное значение		-							
физической величины,			:						
соответствующее минимальному	3	ļ		X	Х	X	X		Υ
значению тока выбранного									
диапазона (0-5, 0-20 или 4-20).									
4. Не заполняется									
5. Не заполняется									
6. Постоянная времени		:			-				
усреднения измерения, с									
0,02; 0,04; 0,06; 0,08; 0,15; 0,3; 0,6;	6		Х	X	X				
1,3; 2,6; 5; 10; 20; 40; 80.									
рекомендуемое значение: 0.3									
7. Не заполняется					•				
8. Контроль выходных сигналов:	He	вып	ОЛ	няе	тся				
9. Не заполняется									
-									

0. Для инициализации режима калибровки аналогового входа заполняется XXXX=1111	0			X	X	X	X		Y
out Диапазон токового входа , мА (0-5,0-20 или 4-20)	o	u	t			X	X	X	X
t1 Калибровочный коэффициент токового входа в начале диапазона (заполняется при калибровке)	t	1			X	X	X	X	X
t2 Калибровочный коэффициент токового входа в конце диапазона (заполняется при калибровке)	t	2			X	x	x	X	X
F1 Код АЦП тах (заполняется автоматически при калибровке)	F	1			X	x	x	X	x
F2 Код АЦП min (заполняется автоматически при калибровке)	F	2			-	x	x	X	х

Примечание: X – цифра от 0 до 9; **Y**- показатель степени 10 в формате записи числа **0.XXXX** • $\mathbf{10}^{\mathsf{Y}}$

Схема внешних подключений US800 с каналом измерения унифицированных сигналов силы постоянного тока **4-20 (0-5,0-20) мА**:

ПРИЛОЖЕНИЕ Г2

Описание дистанционного (беспроводного) считывания архивной информации посредством GSM модемов.

В расходомерах US800 реализована возможность дистанционного (беспроводного) считывания с расходомера или сети расходомеров US800 посредством GSM модемов (Siemens, Cinterion, IRZ) и записи в ПК архивов (часовых, суточных и месячных), установке (коррекции) астрономического времени прибора по последовательному интерфейсу RS232 или RS485.

Рекомендуемые для применения модемы — IRZ MC52iT, CINTERION MC52iT, BGS2T-232 (с интерфейсом RS232) или IRZ MC52i - 485GI, BGS2T-485 (с интерфейсом RS485).

Возможность функционирования обеспечивается посредством технологии передачи данных по голосовым каналам **GSM CSD**. (В МТС – услуга «Мобильный офис», в Beeline – «Передача данных и факсов» и т.д.)

Внимание: Данная услуга может подключаться отдельно, уточняйте способ подключения у своего оператора.

Скорость передачи до 9600 бит/сек.

Дальность передачи ограничивается зоной охвата сети GSM выбранного оператора.

Для скачивания файлов архивов используется программа "US800_APXИB_GSM(CSD)", доступная, как и описание самой программы, для свободного скачивания на сайте www.encont.ru.

Программа работает на стационарных и переносных IBMPC-компьютерах под операционными системами Windows 95/98/Me/2k/XP.

ПРИЛОЖЕНИЕ ГЗ

Исполнение ЭБ US800 с дополнительной функцией «Дозирование заданного объема»

Данное исполнение обеспечивает выполнение всех функций ультразвукового расходомера US800 с дополнительной функцией «Дозирование».

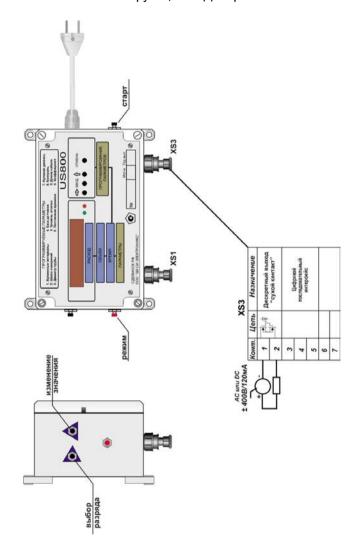
Функция «Дозирование» расходомера заключается в возможности:

- 1. задания значения объема дозирования;
- 2. отработки пуска при нажатии кнопки СТАРТ;
- 3. выдачи сигнала на исполнительное устройство при прохождении заданного объема.

Дополнительно к основным счетчикам объема (**oб_1**) и времени наработки (**BPE_HAPA5_1**) в US800 данного исполнения присутствует:

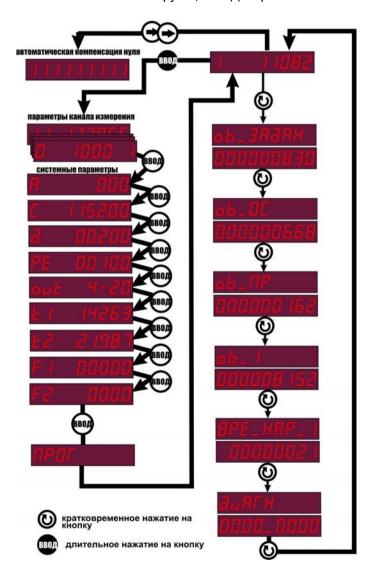
- 1. Задание объема дозирования (ов ЗАДАН);
- 2. Осталось дозировать (**ob_OC**);
- 3. Прошедший через УПР объем во время дозирования $(\mathbf{ob}_{\blacksquare}\mathbf{\Pi}\mathbf{P}).$

Для осуществления процесса дозирования необходимо:


- 1. Перейти на поле «**ob_3AДAH**», нажав необходимое количество раз кнопку «РЕЖИМ».
- 2. В поле ввода (мигающий символ) методом перебора выбрать необходимую цифру значения объема (кнопка на левой стороне ЭБ). Смену позиции (выбор разряда) изменяемого значения производить нажатием кнопки.
- 3. После ввода необходимого значения нажать кнопку **СТАРТ** (на правой стороне ЭБ), осуществив пуск режима дозирования (срабатывания оптореле).

Пуск дозирования возможен только из режима «ob_3AДAН»;

- 4. Для слежения за процессом дозирования перейти на необходимый параметр, нажав нужное количество раз на кнопку «РЕЖИМ»;
- 5. При достижении заданного объема произойдет размыкание контактов оптореле **дозирование закончено**.


ПРИЛОЖЕНИЕ ГЗ (ПРОДОЛЖЕНИЕ)

Внешний вид и схема внешних подключений для исполнения ЭБ US800 с функцией «Дозирование»

ПРИЛОЖЕНИЕ ГЗ (ПРОДОЛЖЕНИЕ)

Структурная схема отображения информации на индикаторе для исполнения ЭБ US800 с функцией «Дозирование»

ПРИЛОЖЕНИЕ Г4

Исполнение ЭБ US800 с дополнительной функцией «Дискретный выход понижения / повышения расхода»

Данное исполнение обеспечивает выполнение всех функций ультразвукового расходомера US800 с дополнительной функцией срабатывания дискретного выхода при понижении / повышении измеряемого расхода ниже установленного значения.

Для задания уставки необходимо выполнить следующие действия:

- 1. В соответствии с п.2.3.3 перейти в режим программирования второго канала. Выбрать параметр **«Шкала»** и установить его значение, соответствующее значению нужной уставки в м³/ч. Выйти из режима программирования.
- 2. Перейти в режим программирования первого канала. Войти в системный параметр **«режим работы ЭБ»**. В соответствии с таблицей 13 отключить функцию «двухканальное исполнение».

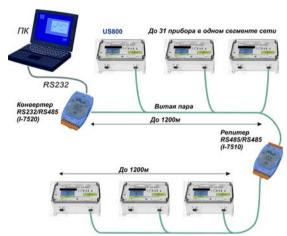
Для ввода нового значения уставки в дальнейшем необходимо будет сначала включить функцию «двухканальное исполнение», выполнить п.1, затем п.2.

Если не отключать «двухканальное исполнение», то режим работы US800 не нарушается и никакого влияния на измерения не оказывается. В этом случае будет присутствовать индикация для расхода во втором канале, которая не несет никакой информации.

Схема внешних подключений для исполнения ЭБ US800 с функцией «Дискретный выход понижения расхода»:

AC UJU DC ± 400B/120MA		XS3						
	Конт.	Цепь	Назначение					
	1	F15.*	Дискретный выход					
	2	_ _	"сухой контакт"					
	3	6	Цифровой					
	4		последовательный интерфейс					
	5		интерфенс					
	6	f+ (I+)	Ч/И или токовый выход					
	7	f- (I-)	чи или токовый выход					

ПРИЛОЖЕНИЕ Д


US800 может обеспечить выполнение коммуникационной функции в составе промышленной сети на основе интерфейса RS485, позволяющей контролировать его параметры при помощи внешнего устройства (компьютера, микропроцессорной системы управления).

Интерфейс RS485 используется для передачи сигнала в обоих направлениях по двум проводам (витая пара). RS485 является стандартным интерфейсом, специально спроектированным для двунаправленной передачи цифровых данных в условиях индустриального окружения. Он широко используется для построения промышленных сетей, связывающих устройства с интерфейсом RS-485 на расстоянии до 1,2 км (репитеры позволяют увеличить это расстояние).

Линия передачи сигнала в стандарте RS485 является дифференциальной, симметричной относительно "земли". Один сегмент промышленной сети может содержать до 32 устройств. сети Передача сигнала ПО является двунаправленной, инициируемой одним ведущим устройством, в качестве которого обычно используется офисный или промышленный компьютер (контроллер). Если управляющий компьютер истечении ПО некоторого времени не получает от модуля ответ. обмен прерывается и инициатива вновь передается управляющему компьютеру. Любой модуль, который ничего не передает, постоянно находится в состоянии ожидания запроса. Ведущее устройство не имеет адреса, ведомые - имеют.

Применение интерфейса RS485 позволяет расположить приборы US800 в непосредственной близости к контролируемому оборудованию и таким образом уменьшить общую длину проводов и величину паразитных наводок на входные цепи. Размер адресного пространства модулей позволяет объединить в сеть 256 устройств. Поскольку нагрузочная способность интерфейса RS485 модулей составляет 32 стандартных устройства, для расширения сети до 256 единиц необходимо использовать RS485 репитеры между фрагментами, содержащими до 32 модулей. Конвертеры и репитеры сети не являются адресуемыми устройствами и поэтому не уменьшают предельную размерность сети.

Для построения сети рекомендуется использовать экранированную витую пару проводов. Модули подключаются к сети с помощью клемм DATA+ и DATA-. Наилучшей топологией сети является длинная линия, к которой в разных местах подключены адресуемые устройства.

Любые разрывы зависимости импеданса линии от пространственной координаты вызывают отражения и искажения сигналов. Чтобы избежать отражений на концах линии, к ним подключают согласующие резисторы.

Команды, посылаемые управляющим компьютером в прибор совместимы с модулями **ADAM-4017**, **ICPDAS I-7017** и имеют следующую синтаксическую структуру (протокол DCON):

#AAN[CHK](CR)- чтение аналогового входа с канала N,

- разделительный символ запроса;

АА - двухсимвольный шестнадцатеричный адрес модуля (от 00 до FF);

N - номер канала, который нужно прочитать (от 0 до В в ASCII формате);

СНК – контрольная сумма из двух символов (в контрольную сумму не включается код символа возврата каретки);

CR - завершающий символ, возврат каретки (0x0Dh);

OTBET >(DATA)[CHK](CR)

> - разделительный символ ответа

(data) - входное значение запрашиваемого канала в ASCII формате. Состоит из знака + или - и пяти десятичных знаков с фиксированной запятой.

Пример

Строка команды:#012B6 (CR)

сумма строки = $\frac{'#'}{1}$ + $\frac{'0'}{1}$ + $\frac{'1'}{1}$ + $\frac{'2'}{1}$ =23h+30h+31h+32h=B6h,

Контрольная сумма =В6h и [СНК]='В6'.

Ответ прибора:>+1.234596(CR)

Сумма строки = '>' + '+' + '1' + '.' + '2' + '3' + '4' +

<u>'5'</u>=3Eh+2Bh+31h+2Eh+32h+33h +34h+35h=0196h,

Контрольная сумма =96h и [СНК]='96'.

Команда запрашивает 2-ой вход модуля с адресом 01h.

Значение 2-го канала равно **+ 1.2345**.

Таблица доступных параметров US800 по RS485 интерфейсу.

№ параметра	Наименование параметра
0	Q1 - мгновенный расход по 1-му каналу
1	Q2 - мгновенный расход по 2-му каналу
2	V1_H - счетчик накопленного объема по 1-му
	каналу старшие 4-ре разряда
3	V1_L - Счетчик накопленного объема по 1-му
	каналу младшие 5-ть разрядов
4	V2_H - счетчик накопленного объема по 2-му
	каналу старшие 4-ре разряда
5	V2_L - Счетчик накопленного объема по 2-му
	каналу младшие 5-ть разрядов
6	Признак "НОРМА" по 1-му каналу (0- канал
	находится в отказе, >0 в норме)
7	Признак "НОРМА" по 2-му каналу (0- канал
	находится в отказе, >0 в норме)
8	Т1_Н - Счетчик времени наработки по 1-му
	каналу старшие 4-ре разряда
9	T1_L - Счетчик времени наработки по 1-му
	каналу младшие 5-ть разрядов

А	Т2_Н - Счетчик времени наработки по 2-му
	каналу старшие 4-ре разряда
В	T2_L - Счетчик времени наработки по 2-му
	каналу младшие 5-ть разрядов
Накопленный объем и время наработки рассчитать по формулам:	
V=K*(100000*V_H + V_L),м3;	
К - вес младшей единицы по Таблице 11 РЭ ч.1	
T=0.1*(100000*T_H + T_L) ,часов.	

Примечания:

1. Параметры последовательной передачи:

Скорость от 300 до 115200 бод, 8 бит данных ,1 стоп бит, бит четности отсутствует.

- 2. Для демонстрации последовательной связи по символьному протоколу с прибором можно использовать программу US800_rs485.exe.
- 3. Для скачивания с прибора архивов использовать программу US800_arc.exe.
- 4. Для использования в конечном применении можно использовать ПО для модулей ADAM-4000 и I-7000, имеющееся на рынке в свободном распространении.

ЧАСТЬ 2

Настоящая часть руководства по эксплуатации расходомера - счетчика жидкости ультразвукового US800 (далее - US800), устанавливает порядок и методику проведения первичной и периодических поверок US800 на поверочных расходомерных эталонных установках.

ЭБ US800, поверенные по данной методике, обеспечивают метрологические характеристики в соответствии с таблицей 1.

Таблица1

		Относительная погрешность при измерении, %			
Диапазон расхода	Диаметр условного прохода, мм; и исполнение УПР	расхода по индикатору и частотно- му выходу	расхода по токовому выходу	объема по индка- тору	
0 . 0-	15-150 однолучевой	± 1,5	± 2,0	± 1,5	
Q _{min} - Q _P	100-150 двухлучевой	± 1,0	± 1,5	± 1,0	
Q _P – Q _{max}	15-150 однолучевой	± 1,0	± 1,0	± 1,0	
	100 -150 двухлучевой	± 0,5	± 1,0	± 0,5	

Межповерочный интервал - 4 года.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки US800 должны выполняться операции, указанные в таблице 2.

Таблица 2

		Обязательность і	проведения операции
Наименование операции	Номер пункта	при первичной поверке	при периодической поверке
1 Внешний осмотр	5.1	Да	Да
2 Опробование	5.2	Да	Да
3 Определение метрологических характеристик	5.3	Да	Да

Примечание - Для сокращения времени и снижения трудоемкости первичной поверки, целесообразно операции первичной поверки совмещать с приемо - сдаточными испытаниями, проводимыми Главным контролером предприятия - изготовителя.

2. СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства измерений, указанные в таблице 3.
- 2.2 Допускается применение других средств поверки, с характеристиками не хуже, чем характеристики средств, указанных в таблице 3.
- 2.3 Все средства измерений, используемые при поверке US800, должны быть поверены и иметь соответствующие документы с отметками о действующей поверке.

Таблица 3

е операции	№ пункта поверки	Средство поверки и его нормативно - технические характеристики
Опробование	5.2	Установка поверочная расходомерная эталонная Диапазон измерения расхода: 0,02-300 м³/ч Диаметры условных проходов поверяемых расходомеров - счетчиков от 15 до 150 Относительная погрешность: при измерении расхода эталонными расходомерами не более ± 0,3 %; при измерении эталонными мерниками не более ± 0,25 %; при измерении весами не более ± 0,15 %;
		Частотомер электронно-счетный типа GFC - 8131H Instek (GW) Диапазон измеряемых частот - от 0.01 Γ ц до 120 М Γ ц Максимальный уровень входного сигнала – 150В (0-10к Γ ц); 5В (10к Γ ц – 120М Γ ц) Погрешность измерения частоты \pm (10 ⁻⁶ + 1 ед. мл. разряда)
Определение метрологи- ческих характерис- тик	5.3	Вольтметр универсальный цифровой GDM-8245 Instek (GW) Погрешность измерения постоянного тока, % \pm (0.2 + 2 ед. мл. разряда) Погрешность измерения постоянного напряжения, % \pm (0,03 + 4 ед. мл. разряда) Термометр лабораторный ТЛ-18 Секундомер-таймер СТЦ-1, предел измерения 999 с
		Манометр MO-160-2,5 MПа 0,4

3.ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Поверители US800 должны иметь квалификационную группу по ПТЭ и ПТБ не ниже III для электроустановок до 1000 В.
- работе При С измерительными приборами оборудованием соблюдены вспомогательным должны быть требования безопасности, соответствующих оговоренные технических описаниях руководствах ПО эксплуатации И применяемых приборов.

4.УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

4.1 При проведении поверки должны соблюдаться условия, не противоречащие рабочим условиям эксплуатации US800, регламентированным в документе «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации. US800.421364.001PЭ Часть 1».

В этом случае должны соблюдаться условия эксплуатации поверочного оборудования.

УПР должен быть присоединен к трубопроводам поверочной установки с соблюдением требований эксплуатационных ограничений (руководство по эксплуатации US800.421364.001PЭ Часть1»).

Нестабильность потока не более 4%;

- 4.2 Для контроля условий поверки должны применяться следующие средства измерений:
- термометр с ценой деления не более 1 °C, диапазоном измерения (0-50) °C;
- психрометр для измерения влажности в диапазоне от 30 до 80% с погрешностью не более ± 5 % при температуре (15-30) °C;
- барометр с диапазоном измерения давления (84-107) кПа с погрешностью не более 1 кПа;
- вольтметр переменного тока для измерения напряжения питания с диапазоном измерения 0-300 В и погрешностью не более ± 1,5%.
- 4.3 Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- определение состава поверителей;
- проверка наличия действующих свидетельств (отметок) о поверке в формулярах средств измерений, используемых при поверке US800:
 - проверка наличия паспорта на поверяемый US800;
- подготовка к работе используемых средств измерений в соответствии с их эксплуатационной документацией и подключение к US800 согласно схеме внешних подключений.
- выдержка перед операциями поверки в нерабочем состоянии не менее 30 минут в условиях указанных в 4.1, а затем во включенном состоянии при этих же условиях не менее 30 минут.
- градуировка для заданного диапазона изменения расхода в соответствии с методикой приложения А.

5.ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр

При внешнем осмотре проверить комплектность и маркировку, наличие пломбирования, отсутствие видимых механических повреждений.

Результаты внешнего осмотра считать положительными, если установлено соответствие внешнего вида и состояния US800 требованиям эксплуатационной документации на него.

5.2 Опробование

При опробовании US800 устанавливается его работоспособность в соответствии с указаниями руководства по эксплуатации US800.421364.001РЭ Часть1.

Произвести 2-3 пробных измерения, контролируя расход по показаниям эталонного и поверяемого расходомеров-счетчиков.

5.3 Определение метрологических характеристик

- 5.3.1 Определение относительных погрешностей при измерении расхода проводить в 3-х точках $Q_{\text{min}},\ Q_{\text{P}},\$ и Q_{max} для канала измерения.
- 5.3.1.1 Значения Q_{min} , Q_P выбираются по таблице 1 руководства по эксплуатации US800.421364.001PЭ Часть1 в

соответствии с условным диаметром УПР из комплекта поверяемого US800.

 Q_{max} принимается равным заданной шкале расхода из паспорта на US800, либо максимальному значению для данного диаметра по таблице 1 руководства по эксплуатации US800.421364.001PЭ Часть 1.

Значения расхода поверочной жидкости при измерении поверяемым US800, снять для каждой точки не менее 3-х раз по показаниям индикатора и показаниям частотомера и амперметра.

5.3.1.2 Относительную погрешность при измерении расхода по индикатору $\delta_{i,n}{}^{j}$ определить для каждой точки по формуле (1):

$$\delta_{iH}^{\ \ j} = \frac{Q_i^j - Q_{i\ o\delta p}^j}{Q_{i\ o\delta p}^j} \times 100 , \%$$
 (1)

где:

 $Q_i^{\,j}$ - значение расхода, снятое с индикатора поверяемого US 800 в i -ой поверочной точке, при j - ом измерении, м 3 /ч;

 $Q_{i\ o\delta p}^{j}$ - значение расхода, снятое с эталонного расходомера — счетчика в i -ой поверочной точке, при j - ом измерении, м 3 /ч.

5.3.1.3 Относительные погрешности при измерении расхода по частотному выходу $\ \delta_{F_i}{}^j$ определить по формуле (2):

$$\delta_{F_{i}}^{j} = \frac{s \times F_{i}^{j}}{1000} - Q_{i \text{ of } p}^{j} \times 100, \%$$
 (2)

где:

s - шкала поверяемого US 800, м 3 /ч;

 $F_i{}^j$ - частота, измеренная на частотном выходе поверяемого US 800 в i -ой поверочной точке, при j - ом измерении, Γ ц;

 $Q_{i\ o\delta p}^{j}$ - значение расхода, снятое с эталонного расходомера – счетчика в i -ой поверочной точке, при j - ом измерении, м³/ч.

5.3.1.4 Относительные погрешности при измерении расхода по токовому выходу $\delta_{I_i}^{\ j}$ определить по формуле (3):

$$\delta_{I_{i}}^{j} = \frac{\frac{s \times (I_{i}^{j} - I_{0})}{\Delta} - Q_{i \ obp}^{j}}{Q_{i \ obp}^{j}} \times 100, \%$$
 (3)

где:

s - шкала поверяемого ЭБ US 800, м³/ч;

 $I_i^{\ j}$ - значение тока, измеренное на токовом выходе поверяемого US 800 в i-ой поверочной точке, при j- ом измерении, мА;

 $I_0\,$ - значение сигнала на токовом выходе, соответствующее 0% от шкалы расхода поверяемого US 800, мА;

 Δ - диапазон изменения сигнала на токовом выходе, мА;

 $Q_{i\ o\delta p}^{j}$ - значение расхода, снятое с эталонного расходомера – счетчика в \dot{i} -ой поверочной точке, при j - ом измерении, м 3 /ч.

Принять за относительные погрешности измерения расхода US800 по индикатору, частотному выходу и токовому выходу максимальные значения погрешностей подсчитанных по формулам 1, 2 и 3 соответственно.

- 5.3.2 Определение относительной погрешности при измерении объема проводить в точке Q_{max} .
- 5.3.2.1 Продолжительность процесса измерения установить такой, чтобы количество прошедшей через УПР жидкости соответствовало объему, составляющего не менее 500 единиц младшего разряда индикатора US800.
- 5.3.2.2 Измерения объема по индикатору провести не менее 3-х раз по следующей методике:
- установить расход жидкости в м³/ч через УПР, соответствующий точке Q_{max};

- вывести на индикацию счетчик объема соответствующего канала измерения;
- в момент смены младшего разряда цифрового индикатора начать процесс измерения объема по образцовому расходомеру счетчику и по поверяемому US800, зафиксировав начальное значение объема $V_{\mu \mu \mu}$ в м 3 ;
- по истечении времени, необходимого для процесса измерения, в момент смены младшего разряда на индикаторе поверяемого US800 зафиксировать $V_{кон}$ и значение объема $V_{oбp}$ в м³ по образцовому расходомеру счетчику.

Относительные погрешности измерения объема $\delta_{_{U}}{}^{j}$ определить по формуле (4):

$$\delta_{V}^{j} = \frac{(V_{\kappa o \mu}^{j} - V_{nav}^{j}) - V_{o \delta p}^{j}}{V_{o \delta p}^{j}} \times 100, \%$$
 (4)

где:

 $V_{_{\!\scriptscriptstyle KOH}}{}^{j}$ - значение объема, снятое в конце процесса измерения с индикатора поверяемого US800 при j - ом измерении в м 3 ;

 $V_{_{\it Harv}}^{}$ - значение объема, снятое в начале процесса измерения с индикатора поверяемого US800 при j - ом измерении в ${\tt M}^3$:

 $V^{j}{}_{o\delta p}$ - значение объема за процесс измерения, снятое с образцового расходомера — счетчика в м 3 .

Принять за относительную погрешность измерения объема по индикатору US800 максимальную из погрешностей, рассчитанных по формуле (4).

- 5.3.2.3 Измерения объема по импульсному выходу провести не менее 3-х раз по показаниям частотомера в режиме счета импульсов следующим образом:
- установить расход жидкости через УПР, соответствующий точке Q_{max};

- вывести на индикацию счетчик объема соответствующего канала измерения;
- в момент смены младшего разряда цифрового индикатора запустить частотомер на подсчет импульсов и начать процесс измерения объема по образцовому расходомеру счетчику;
- по истечении времени, установленному по п. 5.3.2.1, зафиксировать показания частотомера и значение объема по образцовому расходомеру счетчику.

Значение объема Vu , подсчитанное поверяемым US800 определяется по формуле (5):

$$Vu = F_u \times N \tag{5}$$

где F_H - вес импульса, установленный в программируемых параметрах F1 и F2;

N - количество импульсов, подсчитанных частотомером.

Относительные погрешности измерения объема по импульсному выходу $\delta_{r,u}^{\ \ j}$ определить по формуле (6):

$$\delta_{V}^{j} = \frac{V_{II} - V^{j}_{o\delta p}}{V^{j}_{o\delta p}} \times 100, \%$$
 (6)

Принять за относительную погрешность измерения объема по индикатору US800 максимальную из погрешностей, рассчитанных по формуле (6).

- 5.3.3 US800 считается годным к эксплуатации, если значения относительных погрешностей измерения расхода и объема находятся в пределах, указанных в таблице 1.
- 5.3.4 При несоответствии определенных в процессе проведения поверки относительных погрешностей US800 таблице 1, допускается повторно провести градуировку по методике приложения А и провести поверку заново.

6.ОФОРМПЕНИЕ РЕЗУПЬТАТОВ ПОВЕРКИ

6.1 Положительные результаты поверки оформляются записью в паспорте на US800, заверенной подписью и штампом (поверительным клеймом) лица, аккредитованного в области обеспечения единства измерений.

Для исключения несанкционированного доступа программируемым параметрам ЭБ US800 пломбируется мастичной пломбой на одном из крепежных винтов верхней крышки и к эксплуатации с нормированной погрешностью. допускается US800 Пломбирование ЭБ осуществляется представителем независимой эксплуатирующей организации, аккредитованным лицом (госповерителем) или иной организацией (лицом) согласованию обеих сторон (поставщик-потребитель). В случае поставки US800 в полном комплекте с УПР, пломбирование ЭБ US800 осуществляется на заводе-изготовителе.

- 6.2 При отрицательных результатах периодической поверки US800 не допускается к эксплуатации. Выдается извещение о непригодности к эксплуатации и изъятии из обращения US800. Поверительные клейма гасятся.
- 6.3 При отрицательных результатах первичной поверки при выпуске из производства, US800 возвращается изготовителю для устранения дефектов с последующим предъявлением на повторную поверку.

ПРИЛОЖЕНИЕ А **Методика градуировки US800**

- 1. Градуировка производится перед проведением поверки при значениях расхода в точках Q_{min} , Q_{P} , и Q_{max} диапазона расхода соответствующего исполнению поверяемого US800.
- 2. Градуировку производить в режиме измерения по частотному выходу по схеме приложения Б. Продолжительность измерения, обеспечивающую необходимую точность, определяется условием подсчета объема не менее 500 единиц младшего разряда индикатора частотомера.
- 3. Коэффициент коррекции перед градуировкой должен быть запрограммирован значением равным 1.
- 4. В каждой точке провести n измерений расхода (не менее 3-х раз). Для каждой точки определить:

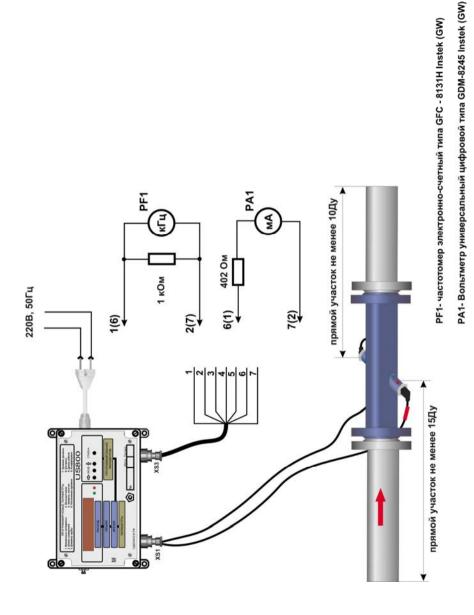
$$K_{i_{\max}} = \frac{Q^{o\delta p}_{i_{\max}}}{Q_{i_{\max}}}, \qquad K_{i_{\min}} = \frac{Q^{o\delta p}_{i_{\min}}}{Q_{i_{\min}}}, \qquad K_{i_p} = \frac{Q^{o\delta p}_{i_p}}{Q_{ip}},$$

где:

 $Q_{i_{\max}}$, $Q_{i_{\min}}$, Q_{i_p} - расходы поверочной жидкости, измеряемые US 800 при i - ом измерении в точках \mathbf{Q}_{\min} , \mathbf{Q}_{P} , и \mathbf{Q}_{\max} соответственно;

 $Q^{o\delta p}{}_{i\,\mathrm{max}}$, $Q^{o\delta p}{}_{i\,\mathrm{min}}$, $Q^{o\delta p}{}_{ip}$ - расходы поверочной жидкости, измеряемые эталонным расходомером - счетчиком при i - ом измерении в точках $\mathbf{Q}_{\mathrm{min}}$, \mathbf{Q}_{P} , и $\mathbf{Q}_{\mathrm{max}}$ соответственно.

Рассчитать:


$$K_{\max} = \frac{\sum\limits_{i=1}^{n} K_{i\max}}{n} \,, \qquad \qquad K_{\min} = \frac{\sum\limits_{i=1}^{n} K_{i\min}}{n} \,, \qquad \qquad K_p = \frac{\sum\limits_{i=1}^{n} K_{ip}}{n} \,.$$

5. Вычислить новое значение коэффициента коррекции по формуле:

$$K = \frac{K_{\text{max}} + K_{\text{min}} + K_{\text{min}}}{3}$$

6. Ввести значение полученного коэффициента K в US800 согласно руководству по эксплуатации US800.421364.001РЭ Часть1.

ПРИЛОЖЕНИЕ Б

ЧАСТЬ 3

Настоящая часть руководства по эксплуатации расходомера – счетчика жидкости ультразвукового US800 (далее - US800), устанавливает порядок и методику проведения первичной и периодических поверок US800 имитационным методом.

US800 поверенные по данной методике обеспечивают метрологические характеристики в соответствии с таблицами 1и 2.

Таблица 1

		Относительная погрешность при измерении, %			
Диапазон расхода	Диаметр условного прохода, мм; и исполнение УПР	расхода по индикатору и частотному выходу	расхода по токо вому выходу	объема по индикато ру	
0 . 0-	32-200 однолучевой	± 3,0	± 3,0	± 3,0	
Q _{min} - Q _P	100-200 двухлучевой	± 2,0	± 2,0	± 2,0	
Q _P – Q _{max}	32-200 однолучевой	± 2,0	± 2,0	± 2,0	
	100-200 двухлучевой	± 1,5	± 2,0	± 1,5	

Таблица 2

		Относительная погрешность при измерении, %			
Диапазон расхода	Диаметр условного прохода, мм; исполнение УПР	расхода по индикатору и частотному выходу	расхода по токовом у выходу	объема по индикато ру	
0 0-	> 200 однолучевой	± 2,0	± 2,5	± 2,0	
Q _{min} - Q _P	> 200 двухлучевой	± 1,5	± 2,0	± 1,5	
Q _P – Q _{max}	> 200 однолучевой	± 1,5	± 2,0	± 1,5	
	> 200 двухлучевой	± 0,75	± 1,5	± 0,75	

Межповерочный интервал - 4 года.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении первичной и периодических поверок US800 должны выполняться операции, указанные в таблице 3.

Таблица 3

	Номер	Обязате проведения	
Наименование операции	пункта	первичная поверка	периоди- ческая поверка
1. Внешний осмотр	5.1.1	да	да
2. Опробование	5.1.2	да	да
3. Определение относительных погрешностей ЭБ: при измерении времени распространения ультразвуковых им-			
пульсов	5.1.3.1	да	да
при преобразовании текущего расхода в выходные сигналы при измерения расхода при измерении объема	5.1.3.2 5.1.3.4 5.1.3.5	да да да	да да да
4. Измерение параметров УПР	5.1.4		
из комплекта поставки US800:			
измерение внутреннего диаметра измерение угла наклона оси	5.1.4.1	да	нет
акустического канала измерение базового расстояния	5.1.4.4		
между ПЭП	5.1.4.5		
изготовленного на трубопроводе диаметром			
более 200мм: измерение внутреннего диаметра	5.1.4.2		да
измерение внутреннего диаметра	5.1.4.4		нет
акустического канала	5.1.4.3	да	1101
измерение смещения оси			нет
акустического канала измерение базового расстояния между ПЭП	5.1.4.5		нет

Продолжение таблицы 3

	Номер	Обязательность проведения операции		
Наименование операции	пункта	первичная поверка	периоди- ческая поверка	
5. Определение коэффициента коррекции	5.1.5	да	да	
6. Ввод программируемых параметров и контроль их значений	5.1.6	да	да	

- 1.2 Для сокращения времени и снижения трудоёмкости поверки US800, операции первичной поверки целесообразно совмещать с приемо-сдаточными испытаниями проводимыми на предприятии изготовителе.
- 1.3 При отсутствии УПР в комплекте поставки US800, изготовление УПР осуществляется непосредственно на трубопроводе на месте эксплуатации. Проверка соблюдения требований к монтажу осуществляется при измерении параметров УПР (5.1.4).

2. СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства измерений, указанные в таблице 4.

Таблица 4

Номер пункта документа при поверке	Наименование образцового средства измерения или вспомогательного средства поверки; номер документа, регламентирующего технические требования к средству; разряд по государственной поверочной схеме и (или) метрологические и основные технические характеристики
1	2
5.1.3	Вольтметр универсальный цифровой GDM-8245 Instek (GW)
	Погрешность измерения постоянного тока, \pm (0.2 + 2 ед. мл. разряда)
	Погрешность измерения постоянного напряжения, $\%\pm(0.03+4$ ед. мл. разряда)

Продолжение таблицы 4

продолжение тавлицы.			
5.1.3	Частотомер электронно-счетный типа GFC - 8131H Instek (GW) Диапазон измеряемых частот - от 0.01 Γ ц до 120 М Γ ц Максимальный уровень входного сигнала – 150B (0-10к Γ ц); 5B (10к Γ ц – 120М Γ ц) Погрешность измерения частоты \pm (10 ⁻⁶ + 1 ед. мл. разряда)		
5.1.3	Технологический УПР - КП-800 с измеренным расстоянием между ПЭП		
5.1.5.2 5.1.5.3 5.1.5.4	Штангенциркуль ШЦ-П-500-0.1 ГОСТ 166-80 Цена деления - 0.1 мм, диапазон измерения 0 - 500 мм Погрешность измерения - 0.1 Приспособление АС803 – для измерения расстояния между ПЭП		
5.1.5.2	Рулетка ЗПК-10АНТ-1 ГОСТ 7502 Цена деления - 1 мм		
5.1.5.3	Толщиномер ультразвуковой УТ-65М Основная погрешность ± (0.01 мм + 0.005х) Диапазон измерения от 1.0 до 20 мм Цена деления наименьшего разряда - 0.01 мм		
5.1.5.3	Угломер с нониусом типа 2-2, модель 127 ГОСТ 5378-88 Диапазон измерений: внутренних углов - от 40 до 180° наружных углов - от 0 до 360° Предел допускаемой погрешности ± 2′		
5.1.3	Термометр ТЛ-4 Цена деления - 0.1°C. Пределы измерения (0 – 100)°C		
5.1.4	Секундомер СОСпр-2б-2-000 "АГАТ" 42958		
5.1.5.1	Нутромер микрометрический НМ-600 ГОСТ 10 Диапазон измерения - от 75 до 600 мм Погрешность - 0.015 мм Нутромер микрометрический НМ-2500 ГОСТ 10 Диапазон измерения - от 600 до 2500 мм Погрешность - 0.04 мм		

Продолжение таблицы 4

	Нутромеры индикаторные ГОСТ 868						
	L	Цена деления - 0.01 мм					
	Наименование	Диапазон измерения	Основная				
			погрешность				
	НИ-50 А	18 - 50 мм	0.015 мм				
5.1.5.1	HИ-100/00	50 -100 мм	0.018 мм				
	НИ-160	100 - 160 мм	0.018 мм				
	НИ-250	160 - 250 мм	0.018 мм				
	НИ-450	250 - 450 мм	0.022 мм				
	НИ-700	450 - 700 мм	0.022 мм				
	НИ-1000 700 - 1000 мм 0.022 мм						
1		2					

- 2.2 Допускается применение других средств измерений с характеристиками не хуже, чем характеристики средств, указанных в таблице 3.
- 2.3 Все средства измерений, используемые при проверке, должны иметь действующие документы об их поверке.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Поверители US800 должны иметь квалификационную группу по ПТЭ и ПТБ не ниже III для электроустановок до 1000 В.
- 3.2 При работе с измерительными приборами и вспомогательным оборудованием должны быть соблюдены требования безопасности, оговоренные в соответствующих технических описаниях и руководствах по эксплуатации применяемых приборов.
- 3.3 Работы по 5.1.4 производить при отсутствии жидкости в трубопроводе.

4. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

4.1 Во время проведения поверки должны соблюдаться условия, не противоречащие рабочим условиям эксплуатации US800 регламентированным в документе «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации. US800.421364.001PЭ. Часть1».

В этом случае должны соблюдаться условия эксплуатации поверочного оборудования.

4.2 Для контроля условий поверки должны применяться следующие средства измерений:

- термометр с ценой деления не более 1 °C, диапазоном измерения (0-50) °C;
- психрометр для измерения влажности в диапазоне (30-80) % с погрешностью не более ± 5 % при температуре (15-30) °C;
- барометр с диапазоном измерения давления (84-107) кПа с погрешностью не более 1 кПа;
- вольтметр переменного тока для измерения напряжения питания с диапазоном измерения 0-300 В и погрешностью не более ± 1.5%.
- 4.3 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
 - определение состава поверителей;
- проверка наличия действующих свидетельств (отметок) о поверке в формулярах средств измерений, используемых при поверке US800;
 - проверка наличия паспорта на поверяемый US800;
- подготовка к работе используемых средств измерений в соответствии с их эксплуатационной документацией и подключение к US800 согласно схеме внешних подключений приложения A.
- выдержка перед операциями поверки в нерабочем состоянии не менее 30 минут в условиях указанных в 4.1, а затем во включенном состоянии при этих же условиях не менее 30 минут.

В качестве УПР подключаемого к ЭБ может использоваться:

- УПР из комплекта поставки US800;
- технологический УПР КП-800.

5. ПРОВЕДЕНИЕ ПОВЕРКИ

- 5.1 Первичная поверка
- 5.1.1 Внешний осмотр

При внешнем осмотре проверить комплектность и маркировку, отсутствие видимых механических повреждений.

Результаты внешнего осмотра считать положительными, если установлено соответствие внешнего вида и состояния US800 требованиям эксплуатационной документации на него.

5.1.2 Опробование

При опробовании US800, устанавливается его работоспособность в соответствии с указаниями руководства по эксплуатации US800.421364.001PЭ. Часть 1.

- 5.1.3 Определение относительных погрешностей ЭБ.
- 5.1.3.1 Для определения относительной погрешности при измерении времени распространения ультразвуковых импульсов в качестве УПР подключаемого к каналу измерения ЭБ могут использоваться:
 - УПР из комплекта поставки US800;
 - технологический УПР КП-800.

Перед проведением измерений необходимо осуществить ввод программируемого параметра **«Длина соединительного кабеля»**.

Для этого следует выполнить следующее:

- определить полусумму длин кабелей L_k от канала измерения ЭБ к УПР;
 - выбрать канал измерения к которому подключен УПР;
- длительным нажатием (не менее 3 секунд) кнопки «ВВОД» перевести ЭБ в режим программирования;
- нажимая кнопку «ВВОД» перейти в параметр «Длина соединительного кабеля» и установить кнопками «→» и «↑» значение полусуммы длин кабелей в метрах;
 - нажимая далее кнопку «ВВОД» выйти в режим работы.

Измеряемое ЭБ значение времени распространения ультразвуковых импульсов определить следующим образом:

- выбрать канал измерения;
- перейти в параметр **«Временные интервалы»** режима программирования длительным нажатием (не менее 3 секунд) кнопки «ВВОД»;
- нажатием кнопки « \uparrow » открыть окна **1.3** и **1.4** и считать в них соответственно значения полусуммы t_{cp} и разности времен Δt распространения ультразвуковых импульсов.

Проверить выполнение условия: $\Delta t < 0,2$ микросекунды.

При выполнении данного условия продолжить поверку.

Измерить температуру воды в УПР с точностью \pm 0,1 °C.

По таблице приложения Б и измеренному значению температуры воды в УПР определить значение скорости ультразвука C в воде. Определить по формуле (1) расчетное время распространения ультразвуковых импульсов t_{pacy} .

$$t_{pac4} = \frac{L_{\pi}}{C} \quad , \tag{1}$$

где $L_{_{I\!I}}$ - расстояние между излучающими торцами ПЭП, м;

 ${\it C}\,$ - скорость ультразвука, соответствующая измеренной температуре воды (из таблицы приложения Б), м/с.

Определить по формуле (2) относительную погрешность при измерении времени распространения ультразвуковых импульсов:

$$\delta_t = \frac{t_{cp} - t_{pacy}}{t_{pacy}} \times 100, \quad \%$$
 (2)

5.1.3.2 Определение относительной погрешности при преобразовании текущего расхода в выходные сигналы.

Выбрать канал измерения и перевести ЭБ в режим программирования. В режиме ввода параметров настройки выбрать параметр **«Контроль выходных сигналов»**. Последовательно выбирая точки $0.25Q_{max}$, $0.5Q_{max}$, $0.75Q_{max}$, и Q_{max} зафиксировать по измерительным приборам:

- значения сигнала Q_F на частотном выходе в каждой точке;
- значения сигнала Q_I на аналоговом выходе в каждой точке.

Проверить выполнение условий указанных в таблице 5.

Если хотя бы одно из условий не выполняется, ЭБ считать не прошедшим поверку.

Таблица 5

Частотный	Диапазон аналогового сигнала, мА				
сигнал, Гц	0-5мА	0-20мА	4-20мА		
0	0 ≤ Q _i < 0,001	$0 \le Q_1 < 0.01$	3,99 <q<sub>1<4,01</q<sub>		
249,75 <q<sub>F <250,25</q<sub>	1,245 <q<sub>1<1,255</q<sub>	4,98 <q<sub>1<5,02</q<sub>	7,968 <q<sub>i<8,032</q<sub>		
499,5 <q<sub>F<500,5</q<sub>	2,49 <q<sub>i <2,51</q<sub>	9,96 <q<sub>1<10,04</q<sub>	11,952 <q<sub>1<12,048</q<sub>		
749,25 <q<sub>F <750,75</q<sub>	3,735 <q<sub>1<3,765</q<sub>	14,94 <q<sub>1<15,06</q<sub>	15,936 <q<sub>I<16,064</q<sub>		
999,0 <q<sub>F <1001,0</q<sub>	4,98 <q<sub>i <5,02</q<sub>	19,92 <q<sub>1<20,08</q<sub>	19,92 <q<sub>1<20,08</q<sub>		

5.1.3.3 Проверка автоматической корректировки смещения нуля канала измерения.

Перевести ЭБ в режим программирования. В соответствии с указаниями руководства по эксплуатации (Часть 1) установить программируемые параметры канала(ов) измерения:

- «Шкала»: 10 м³/ч;
- «Внутренний диаметр»: 0,05 м;
- «База датчиков»: расстояние между излучающими торцами ПЭП в УПР;
 - «Уровень отсечки»: 0,1;
 - «Постоянная времени»: 20,0;
- «Длина кабеля»: фактическая длина кабеля соединяющего УПР с ЭБ в метрах;
 - «Коэффициент коррекции»: 1,0.

Нажать кнопку «→» до появления в крайнем левом разряде цифрового индикатора цифры 0, свидетельствующей о переходе в режим автоматической компенсации.

Нажать кнопку «→», крайний левый разряд цифрового индикатора должен поменять значение с 0 на 1. Процесс выполнения автоматической компенсации индицируется постепенным заполнением индикатора цифрой "1".

После окончания данного процесса ЭБ автоматически переходит в режим измерения. Выждать 40-60 секунд до установки значения измеряемого расхода на цифровом индикаторе. Снять показания Q_0 с цифрового индикатора ЭБ.

Вычислить относительное смещение нуля δ_0 по формуле (3):

$$\delta_0 = Q_0 \times 10 , \%$$
 (3)

Проверить выполнение условия $|\delta_0|$ < 0,5%. При невыполнении данного условия провести автоматическую корректировку смещения нуля повторно. Если после пятикратного проведения автоматической корректировки условие $|\delta_0|$ < 0,5% не соблюдается, то дальнейшая поверка прекращается и US800 считается не прошедшим поверку.

5.1.3.4 Определение относительной погрешности при измерении расхода.

Относительную погрешность ЭБ при измерении расхода определять следующим образом.

Войти в параметр **«Смещение нуля»**. Установить значение данного параметра равное сумме (без учета знака) числа компенсирующего смещение нуля (полученного в процессе автоматической корректировки по п. 5.1.3.3) и **50** нс. Перейти в режим работы через процесс записи **«ПРОГ»**.

Через время 20-30 секунд снять с индикатора значение измеряемого расхода $Q_{\mathit{uзм}}$. Войти в параметр **1.3** и считать значение t_{cp} .

Вычислить расчетное значение расхода $Q_{\it pacч}$ по формуле (4):

$$Q_{pacq} = 3534291,7 \times \frac{L_{\pi}^{2}}{t_{co}^{2}}, \text{ M}^{3}/\text{Y}$$
 (4)

где L_{π} - расстояние между излучающими торцами ПЭП, м.

Определить по формуле (5) относительную погрешность при измерении расхода по цифровому индикатору $\delta_{\prime\prime}$:

$$\delta_u = \frac{Q_{u_{3M}} - Q_{pacu}}{Q_{pacu}} \times 100, \%$$
 (5)

5.1.3.5 Относительную погрешность при измерении объема определять следующим образом.

Выбрать канал измерения. Перейти в режим индикации счетчика объема нажатием кнопки «РЕЖИМ».

В момент смены цифры в младшем разряде цифрового индикатора зафиксировать начальное значение объема $V_{\rm hav}$ и запустить секундомер.

Через время не менее чем 300 секунд, в момент смены цифры в младшем разряде цифрового индикатора зафиксировать конечное значение объема $V_{\rm кон}$, остановить секундомер и зафиксировать по нему время $T_{\rm c}$.

Определить по формуле (6) относительную погрешность при измерении объема δ_V :

$$\delta_V = \frac{V_{\text{KOH}} - V_{\text{HAY}} - V_{\text{pacy}}}{V_{\text{pacy}}} \times 100 , \%$$
 (6)

где
$$V_{pac4} = \frac{Q_{pac4} \times T_c}{3600}$$
, м³ (7)

- 5.1.3.6 US800 считать прошедшим поверку и годным к эксплуатации, если относительные погрешности:
 - δt находится в пределах $\pm 0,4$ %;
 - δ_u находится в пределах \pm 0,4 %;
 - δ_V находятся в пределах ± 0.5 %;
 - 5.1.4 Определение и измерение параметров УПР.
- 5.1.4.1 Измерение внутреннего диаметра УПР подготовленного на предприятии изготовителе.

Внутренний диаметр корпуса УПР измерять нутромером по двум взаимно перпендикулярным направлениям I-I и II-II (D^I и D^{II}) в сечении прохождения ультразвуковых импульсов между ПЭП. Точность измерения не хуже 0.05 мм.

По каждому из направлений корпуса выполнить не менее 3 измерений.

Вычислить среднеарифметическое значение внутреннего диаметра для УПР $D_{\it внутр}$ по формуле (8):

$$D_{BHymp} = \frac{\sum_{i=1}^{n} D_{i}^{I} + \sum_{i=1}^{n} D_{i}^{II}}{2 \times n}$$
 (8)

Проверить выполнение условия: $|D^{II} - D^I| \le 0.01 \times D_{\textit{внутр}}$

Вычисленное значение $D_{\mathit{внутр}}$ занести в протокол измерений.

5.1.4.2 Измерение внутреннего диаметра УПР изготовленного на трубопроводе проводить в соответствии с рисунком 1.

Очистить участок трубопровода, на котором будут производиться измерения.

Рулеткой в сечениях I-I и II-II не менее 3 раз измерить длину окружности трубопровода и вычислить среднюю длину окружности L_{H} м, и среднее значение наружного диаметра D_{H} по формуле (9):

$$D_{H} = \frac{L_{H}}{\pi} \tag{9}$$

Занести значение D_{μ} в протокол измерений.

При помощи измерительной штанги с фиксатором и штангенциркуля измерить по двум взаимно перпендикулярным направлениям расстояния H^{11} и H^{12} не менее 3 раз и вычислить их средние значения. Определить суммарную толщину стенки трубопровода и отложений H_{n1} по формуле (10):

$$H_{nl} = D_{Han1} - H^{11} + H^{12} (10)$$

где ${\it D}_{\it hapl}$ - наружный диаметр трубопровода в сечении ${\it I}-{\it I}$ по формуле (9).

Повторить измерения и вычислить H_{nll} по формуле (11):

$$H_{nll} = D_{Hapll} - H^{21} + H^{22} (11)$$

где $D_{\it Hap II}$ - наружный диаметр трубопровода в сечении II-II по формуле (9).

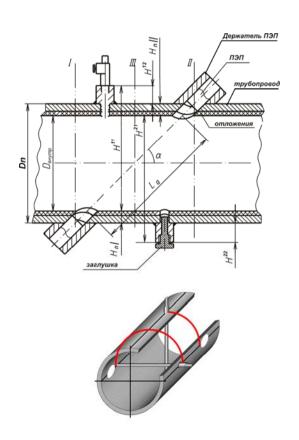


Рисунок 1

Среднее значение внутреннего диаметра трубопровода $D_{\it eнуmp}$ в сечении $\it III$ вычислить по формуле (12):

$$D_{\text{внутр}} = \frac{\left(D_{\text{внутр}l} + D_{\text{внутр}ll}\right)}{2} \tag{12}$$

где:

$$D_{ extit{BHYMPI}} = D_{ extit{HapI}} - H_{nI}$$
 $D_{ extit{BHYMPII}} = D_{ extit{HapII}} - H_{nII}$

Рассчитанное значение $D_{\it внутр}$ занести в протокол измерений.

- 5.1.4.3 Смещение оси акустического канала χ относительно центральной оси трубопровода определить одним из способов:
- с помощью измерительных штанг равной длины и штангенциркуля в соответствии с рисунком 2.
- измерением длин дуг между центрами приваренных держателей в соответствии с рисунком 3.

Пропустить одну штангу через отверстия держателей ПЭП, обеспечивая скользящую посадку, а другую разместить на наружной поверхности УПР так, чтобы точка касания являлась центром штанги. Затем, закрепить концы штанг стяжками на равном расстоянии А .Измерить расстояние А штангенциркулем.

Переместить внешнюю штангу на другую сторону УПР и, используя вышеуказанную методику измерить размер В. Смещение χ с точностью не хуже 0.1% Δ_v , вычислить по формуле (13):

$$\chi = \frac{|(A - H_1) - (B - H_2)|}{2} \tag{13}$$

где H_1 и H_2 - толщина стенки УПР в точках соприкосновения со штангой, м.

Толщину стенки H измерить ультразвуковым толщиномером в 2-х противоположных точках сечения прохождения ультразвуковых импульсов между ПЭП. В каждой точке выполнить не менее 3 измерений.

a)

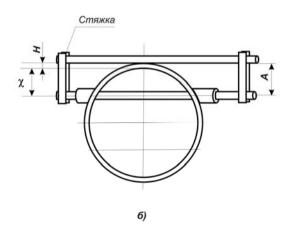


Рисунок 2

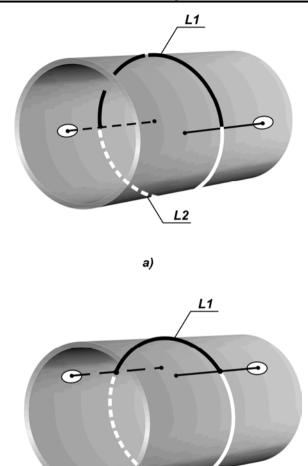


Рисунок 3

б)

<u>L2</u>

Для двухлучевого УПР (рисунок 2б):

$$\chi = A - H \tag{14}$$

Проверить выполнение условий:

Для однолучевого УПР: 0.48 $D_{\mathit{envmp}} \leq \chi' \leq$ 0.52 D_{envmp} ,

где
$$\chi' = \chi + \frac{D_{\text{внутр}}}{2}$$
 . 0,95 \leq (L1/L2) \leq 1,05

Для двухлучевого УПР: 0.24 $D_{examp} \le \chi \le 0.26 D_{examp}$

$$0.48 \le (L1/L2) \le 0.52$$

Выполнение данных условий обеспечивает соответствие US800 метрологическим характеристикам, указанным в таблицах 1 и 2.

5.1.4.4 Измерение угла наклона оси акустического канала α проводить в соответствии с рисунком 4 с помощью приспособления AC 805.

Измерение угла провести не менее 3 раз с каждой стороны. Рассчитать средние значения α^1 и α^2 .

Проверить выполнение условий:

$$|\alpha_i^1 - \alpha^1| \le 10$$
, $|\alpha_i^2 - \alpha^2| \le 10$,

где і – номер измерения.

Угол наклона оси акустического канала α вычислить по формуле (15):

$$\alpha = (\alpha^1 + \alpha^2)/2 \tag{15}$$

Результат вычисления α заносят в протокол измерений.

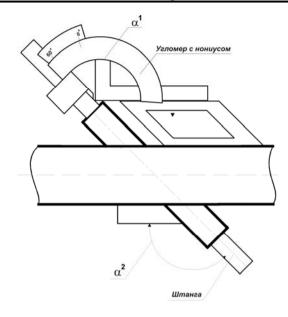


Рисунок 4

5.1.4.5 Измерение базового расстояния $L_{{\mathbb I}}$ между ПЭП.

5.1.4.5.1 Механический способ.

Измерения проводят с помощью нутромера или штанги и штангенглубиномера (приспособление AC803), в соответствии с рисунком 5.

Установить в один из держателей ПЭП1 и вставить измерительную штангу в противоположный держатель до упора в излучающую поверхность ПЭП1.

Надеть фиксатор с прокладкой (которая будет использоваться при установке ПЭП2) на штангу и закрепить его в посадочном отверстии под ПЭП держателя.

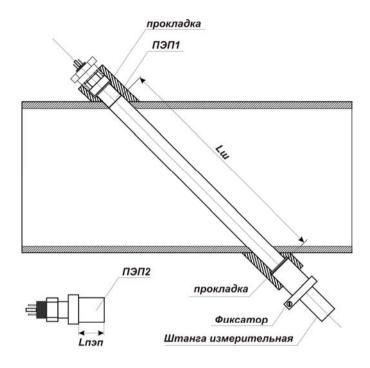


Рисунок 5

Вытащить штангу и измерить расстояние $L_{I\!I\!I}$ между ее торцом и торцом фиксатора. Вычислить базовое расстояние между ПЭП по формуле (16):

$$L_{II} = L_{III} - L_{II\ni II} , \qquad (16)$$

где $L_{\it \Pi \ni \Pi}$ - расстояние между излучающим торцом ПЭП2 и его посадочным местом под держатель.

Значение $L_{{\mathbb Z}}$ занести в протокол измерений.

5.1.4.5.2 Электронный способ.

Измерения проводят с помощью ЭБ, прошедшего поверку в соответствии с п.5.1.3.1 Части 3 настоящего руководства.

Заполнить УПР водой. Для повышения точности измерения рекомендуется использовать по возможности дистиллированную воду. При отсутствии такой возможности можно применять воду, используемую для хозяйственных нужд на месте эксплуатации US800. УПР должен быть заполнен так, чтобы ПЭП полностью находились под водой.

По методике п.5.1.3.1 считать измеренное ЭБ значение t_{cp} .

Измерить температуру воды в УПР с точностью \pm 0,1 °C.

По таблице приложения Б и измеренному значению температуры воды в УПР определить значение скорости ультразвука *C* в воде.

Значение t_{cp} измерить не менее 3-х раз с интервалом 1 – 1,5 мин, при этом каждое считывание должно сопровождаться измерением температуры воды.

Вычислить значение $L_{_{I\!I}}{}^{i}$ по формуле (17):

$$L_{\pi}^{i} = C^{i} \times t_{cp}^{i} ; \qquad (17)$$

где і - номер измерения.

Вычислить среднее значение $\,L_{I\!\!I}\,$ по формуле (18):

$$L_{\mathcal{A}} = \frac{\sum_{i=1}^{n} L_{\mathcal{A}}^{i}}{n} \tag{18}$$

Значение $L_{\scriptscriptstyle {\it I\! I}}$ занести в протокол измерений.

5.1.5 Определение коэффициента коррекции.

Коэффициент коррекции K определяется по формуле (19):

$$K = (1/K_{\Gamma}) \cdot tg\alpha \cdot (1/K_{La}) \tag{19}$$

5.1.5.1 Гидродинамический коэффициент K_{Γ} выбирается из таблицы 6 для исполнения US800 с однолучевыми УПР заводского изготовления.

Таблица 6

D _y , мм	32	40	50	65	80	100	150	200
1/ K _Γ	0,9284	0,9295	0,9306	0,9320	0,9334	0,9354	0,9383	0,9400

 $K_{la} = 1$.

5.1.5.2 Гидродинамический коэффициент для однолучевых УПР, изготовленных на трубопроводе определять по формуле (20):

$$K_{\Gamma} = \frac{K_{\Gamma \max} + K_{\Gamma \min}}{2}$$
 (20)

где:

 $K_{\Gamma_{\text{max}}}$ - значение гидродинамического коэффициента, соответствующее максимальному значению числа Рейнольдса Re_{max} ;

 $K_{\Gamma \min}$ - значение гидродинамического коэффициента, соответствующее минимальному значению числа Рейнольдса Re_{\min} .

Числа Рейнольдса Re_{max} и Re_{min} определить по формулам (21) и (22) соответственно:

$$Re_{max} = \frac{4 \times Q_{max}}{\pi \times D_{RHVmn} \times v_{min}}$$
 (21)

$$Re_{min} = \frac{4 \times Q_{min}}{\pi \times D_{eHVMD} \times v_{max}}$$
 (22)

где Q_{max} и Q_{min} - максимальный и минимальный расходы возможные на месте эксплуатации, м³/с;

 u_{min} и u_{max} - минимальное и максимальное значения коэффициента кинематической вязкости жидкости;

Значение V для воды при её температуре в условиях эксплуатации определять по данным таблицы приложения В. Значение V для других жидкостей определять лабораторным методом по отобранной пробе или измерять поточным вискозиметром.

Значение гидродинамического коэффициента $K_{\Gamma \max}$, соответствующее максимальному значению числа Рейнольдса Re_{\max} определить по формуле (23):

$$K_{\Gamma \max} = 1.01 + 0.38 \times \sqrt{\lambda}$$
 (23)

где:

$$\lambda = 0.11 \times \sqrt[4]{\frac{68}{\text{Re}_{\text{max}}} + \frac{K_3}{1000 \times D_{\text{eHymp}}}}$$
; (24)

λ - коэффициент гидравлического трения;

 $K_{\mathfrak{g}}$ - значение эквивалентной шероховатости трубопровода в соответствии с таблицей приложения Г.

Значение гидродинамического коэффициента $K_{\Gamma_{\min}}$,

соответствующее минимальному значению числа Рейнольдса Re_{min} , определить по графику приложения Д.

 $K_{La} = 1$, при выполнении условия пункта 5.1.4.3 настоящего руководства.

5.1.5.3 Гидродинамический коэффициент для двухлучевых УПР: $\kappa_{\Gamma} = 1$, при соблюдении условий обеспечивающих точность изготовления УПР данного типа по документу «Расходомер-счетчик жидкости ультразвуковой US800. Руководство по эксплуатации. US800.421364.001PЭ. Часть 1».

$$(1/K_{La}) = 1,1547.$$

5.1.5.4 Если для измеренного смещения акустической оси χ не выполняются условия п. 5.1.4.3 настоящего руководства, то коэффициент искажения акустической оси вычисляется по формуле (25):

$$K_{La} = (1 - [4\chi^2 / D_{BHVmp}^2])^{1/2}$$
 (25)

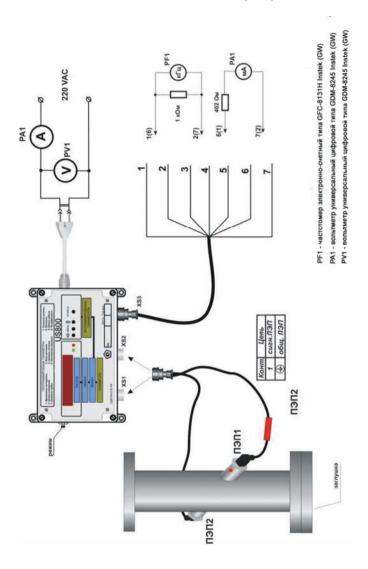
5.1.6 При вводе нового значения коэффициента коррекции К должно быть приглашено области аккредитованное обеспечения единства измерений лицо (госповеритель). Под его рассчитывается И новое контролем вводится значение коэффициента коррекции реальных условий, US800 ДЛЯ пломбируется без полной поверки.

5.2 Периодическая поверка

Периодическая поверка выполняется в объеме и последовательности в соответствии с пунктом 1 настоящей части руководства по эксплуатации.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

6.1 Положительные результаты поверки оформляются записью в паспорте на US800, заверенной подписью и штампом (поверительным клеймом) лица, аккредитованного в области обеспечения единства измерений.


В случае поставки US800 без УПР, при выпуске из производства первичной поверке подвергается только ЭБ US800. В этом случае, после измерения линейно-угловых размеров УПР, изготовленного на трубопроводе на месте эксплуатации, программируемые параметры заносятся в ЭБ US800 и оформляются записью в паспорте на US800, заверенной подписью и штампом (поверительным клеймом) лица, аккредитованного в области обеспечения единства измерений.

Для исключения несанкционированного доступа к программируемым параметрам ЭБ US800 пломбируется мастичной пломбой на одном из крепежных винтов верхней крышки и допускается к эксплуатации с нормированной погрешностью. Пломбирование ЭБ US800 осуществляется представителем

независимой эксплуатирующей организации, аккредитованным лицом (госповерителем) или иной организацией (лицом) по согласованию обеих сторон (поставщик-потребитель). В случае поставки US800 в полном комплекте с УПР пломбирование ЭБ US800 осуществляется на заводе-изготовителе.

- 6.2 При отрицательных результатах периодической поверки US800 не допускается к эксплуатации. Выдается извещение о непригодности к эксплуатации и изъятии из обращения US800. Поверительные клейма гасятся.
- 6.3 При отрицательных результатах первичной поверки при выпуске из производства, US800 возвращается изготовителю для устранения дефектов с последующим предъявлением на повторную поверку.

ПРИЛОЖЕНИЕ А Схема включения US800 при проведении поверки

ПРИЛОЖЕНИЕ Б Зависимость скорости распространения ультразвуковых импульсов от температуры, м/с

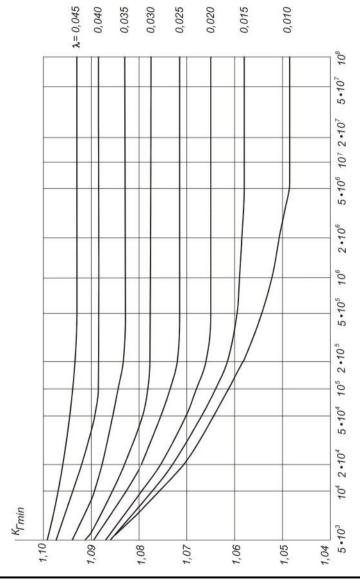
t, °C	При t, °C									
, -	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
1	1402,4	1402,9	1403,4	1403,9	1404,4		1405,4	1405,9	1406,4	1406,9
2	1407,4	1407,9	1408,4	1408,8	1409,3	1409,8	1410,3	1410,8	1411,3	1411,8
3	1412,2	1412,7	1413,2	1413,7	1414,1	1414,6	1415,1	1415,6	1416,0	1416,5
4	1417,0	1417,5	1417,9	1418,4	1418,9	1419,3	1419,8	1420,3	1420,7	1421,2
5	1421,6	1422,1	1422,5	1423,0	1423,5	1423,9	1424,4	1424,8	1425,3	1425,7
6	1426,2	1426,6	1427,1	1427,5	1427,9	1428,4	1428,8	1429,3	1429,7	1430,2
7	1430,6	1431,0	1431,5	1431,9	1432,3	1432,8	1433,2	1433,6	1434,1	1434,5
8	1439,1	1439,5	1440,0	1440,4	1440,8	1441,2	1441,6	1442,0	1442,4	1442,8
9	1443,2	1443,7	1444,1	1444,5	1444,9		1445,7	1445,1	1446,5	1446,9
10	1447,3		1448,1	1448,4		1449,2	1449,6	1450,0	1450,4	1450,8
11	1451,2	1451,6	1452,0	1452,3	1452,7	1453,1	1453,5	1453,9	1454,2	1454,6
12	1455,0	1455,4	1455,8	1456,1	1456,5	1456,9	1457,3	1457,6	1458,0	1458,4
13	1458,7	1459,1	1459,5	1459,8	1460,2	1460,7	1460,9	1461,3	1461,6	1462,0
14	1462,4	1462,7	1463,1	1463,4	1463,8	1464,1	1464,5	1464,9	1465,2	1465,6
15	1465,9	1466,3	1466,6	1467,0	1467,3	1467,6	1468,0	1468,3	1468,7	1469,0
16	1469,4	1469,7	1470,0	1470,4	1470,7	1471,1	1471,4	1471,7	1472,1	1472,4
17	1472,7	1473,1	1473,4	1473,7	1474,1	1474,4	1474,7	1475,0	1475,4	1475,7
18	1476,0	1476,3	1476,7	1477,0	1477,3	1477,6	1477,9	1478,3	1478,6	1478,9
19	1479,2	1479,5	1479,8	1480,1	1480,5	1480,8	1481,1	1481,4	1481,7	1482,0
20	1482,3	1482,6	1482,9	1483,2	1483,5	1483,8	1484,1	1484,4	1484,7	1485,0
21	1485,3	1485,6	1485,9	1486,2	1486,5	1486,8	1487,1	1487,4	1487,7	1488,0
22	1488,3	1488,6	1488,9	1489,2	1489,4	1489,7		1490,3	1490,6	1490,9
23	1491,2	1491,4	1491,7	1492,0	1492,3	1492,6	1492,8		1493,4	1493,7
24	1493,9	1494,2	1494,5	1494,8	1495,0	1495,3	1495,6	1495,9	1496,1	1496,4
25	1496,7		1497,2	1497,5	1497,7	1498,0	1498,2	1498,5	1498,8	1499,0
26	1499,3	1499,6	1499,8	1500,1	1500,3	1500,6	1500,8	1501,1	1501,3	1501,6
27	1501,9	1502,1	1502,4	1502,6	1502,9	1503,1	1503,4	1503,6	1503,8	1504,1
28	1504,3		1504,8	1505,1	1505,3	1505,6	1505,8		1506,3	1506,5
29	1506,8		1507,2	1507,5	1507,7	1507,9			1508,6	1508,9
30	1509,1	1509,3	1509,6	1509,8	1510,0	1510,2	1510,5	1510,7	1510,9	1511,2
31	1511,4	1511,6	1511,8	1512,0	1512,3	1512,5	1512,7	1512,9	1513,1	1513,4
32	1513,6		1514,0	1514,2	1514,4	1514,7			1515,3	1515,5
33	1515,7		1516,1	1516,3	1516,6	1516,8	1517,0		1517,4	1517,6
34	1517,8		1518,2	1518,4	1518,6	1518,8	1519,0	1519,2	1519,4	1519,6
35	1519,8	1520,0	1520,2	1520,4	1520,6	1520,8	1521,0		1521,3	1521,5
36	1521,7	1521,9	1522,1	1522,3	1522,5	1522,7	1522,9	1523,0	1523,2	1523,4
37	1523,6	1523,8	1524,0	1524,2	1524,3	1524,5	1524,7	1524,9	1525,1	1525,2
38	1525,4	1525,6	1525,8	1525,9	1526,1	1526,3	1526,5	1526,6	1526,8	1527,0
39	1527,2	1527,3	1527,5	1527,7	1527,8	1528,0	1528,2	1528,4	1528,5	1528,7

t, °C	При t, °C									
	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
40	1528,9	1529,0	1529,2	1529,3	1529,5	1529,7	1529,8	1530,0	1530,2	1530,3
41	1530,5	1530,6	1530,8	1531,0	1531,1	1531,3	1531,4	1531,6	1531,7	1531,9
42	1532,1	1532,2	1532,4	1532,5	1532,7	1532,8	1533,0	1533,1	1533,3	1533,4
43	1533,6	1533,7	1533,9	1534,0	1534,1	1534,3	1534,4	1534,6	1534,7	1534,9
44	1535,0	1535,2	1535,3	1535,4	1535,6	1535,7	1535,9	1536,0	1536,1	1536,3
45	1536,4	1536,5	1536,7	1536,8	1537,0	1537,1	1537,2	1537,4	1537,5	1537,6
46	1537,7	1537,9	1538,0	1538,1	1538,3	1538,4	1538,5	1538,7	1538,8	1538,9
47	1539,0	1539,2	1539,3	1539,4	1539,5	1539,7	1539,8	1539,9	1540,0	1540,1
48	1540,3	1540,4	1540,5	1540,6	1540,7	1540,9	1541,0	1541,1	1541,2	1541,3
49	1541,4	1541,5	1541,7	1541,8	1541,9	1542,0	1542,1	1542,2	1542,3	1542,4
50	1542,6	1542,7	1542,8	1542,9	1543,0	1543,1	1543,2	1543,3	1543,4	1543,5
51	1543,6	1543,7	1543,8	1543,9	1544,0	1544,1	1544,2	1544,3	1544,4	1544,5
52	1544,6	1544,7	1544,8	1544,9	1545,0	1545,1	1545,2	1545,3	1545,4	1545,5
53	1545,6	1545,7	1545,8	1545,9	1546,0	1546,1	1546,2	1546,2	1546,3	1546,4
54	1546,5	1546,6	1546,7	1546,8	1546,9	1547,0	1547,0	1547,1	1547,2	1547,3
55	1547,4	1547,5	1547,5	1547,6	1547,7	1547,8	1547,9	1548,0	1548,0	1548,1
56	1548,2	1548,3	1548,4	1548,4	1548,5	1548,6	1548,7	1548,7	1548,8	1548,9
57	1549,0	1549,0	1549,1	1549,2	1549,3	1549,3	1549,4	1549,5	1549,5	1549,6
58	1549,7	1549,8	1549,8	1549,9	1550,0	1550,0	1550,1	1550,2	1550,2	1550,3
59	1550,4	1550,4	1550,5	1550,5	1550,6	1550,7	1550,7	1550,8	1550,9	1550,9
60	1551,0	1551,0	1551,1	1551,2	1551,2	1551,3	1551,3	1551,4	1551,4	1551,5
61	1551,6	1551,6	1551,7	1551,7	1551,8	1551,8	1551,9	1551,9	1552,0	1552,0
62	1552,1	1552,1	1552,2	1552,2	1552,3	1552,3	1552,4	1552,4	1552,5	1552,5
63	1552,6	1552,6	1552,7	1552,7	1552,8	1552,8	1552,8	1552,9	1552,9	1553,0
64	1553,0	1553,1	1553,1	1553,1	1553,2	1553,2	1553,3	1553,3	1553,3	1553,4
65	1553,4	1553,5	1553,5	1553,5	1553,6	1553,6	1553,6	1553,7	1553,7	1553,7
66	1553,8	1553,8	1553,8	1553,9	1553,9	1553,9	1554,0	1554,0	1554,0	1554,1
67	1554,1	1554,1	1554,1	1554,2	1554,2	1554,2	1554,3	1554,3	1554,3	1554,3
68	1554,4	1554,4	1554,4	1554,4	1554,5	1554,5	1554,5	1554,5	1554,5	1554,6
69	1554,6	1554,6	1554,7	1554,6	1554,7	1554,7	1554,7	1554,7	1554,7	1554,8
70	1554,8	1554,8	1554,8	1554,8	1554,8	1554,8	1554,9	1554,9	1554,9	1554,9
71	1554,9	1554,9	1554,9	1554,9	1555,0	1555,0	1555,0	1555,0	1555,0	1555,0
72	1555,0	1555,0	1555,0	1555,0	1555,0	1555,1	1555,1	1555,1	1555,1	1555,1
73	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1
74	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1
75	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,1	1555,0

Примечание - Данные заимствованы из монографии "Александров А.А Трахтенгерц М.С., Теплофизические свойства воды при атмосферном давлении. - М.: Изд-во стандартов, 1977. - 100 с. - (Государственная служба стандартных справочных данных. Сер.: Монографии)".

ПРИЛОЖЕНИЕ В Коэффициент кинематической вязкости воды при атмосферном давлении ($10^{-6}~{\rm M}^2/{\rm c}$)

	t°C									
t°C	0	1	2	3	4	5	6	7	8	9
0	1,793	1,732	1,675	1,621	1,569	1,520	1,474	1,429	1,387	1,347
10	1,308	1,272	1,237	1,203	1,171	1,1401	1,1107	1,0825	1,0554	1,0294
20	1,0045	0,9905	0,9574	0,9353	0,9139	0,8934	0,8736	0,8545	0,8361	0,8184
30	0,8012	0,7847	0,7687	0,7533	0,7383	0,7239	0,7099	0,6964	0,6833	0,6706
40	0,6583	0,6464	0,6348	0,6236	0,6127	0,6022	0,5919	0,5820	0,5723	0,5629
50	0,5537	0,5449	0,5362	0,5278	0,5196	0,5116	0,5039	0,4963	0,4890	0,4818
60	0,4748	0,4680	0,4613	0,4549	0,4485	0,4424	0,4363	0,4305	0,4247	0,4191
70	0,4137	0,4083	0,4031	0,3980	0,3930	0,3881	0,3833	0,3787	0,3741	0,3691
80	0,3653	0,3610	0,3568	0,3527	0,3487	0,3448	0,3410	0,3372	0,3335	0,3299
90	0,3284	0,3229	0,3195	0,3162	0,3129	0,3097	0,3065	0,3035	0,3004	0,2975
100	0,2945	0,2917	0,2889	0,2861	0,2834	0,2808	0,2782	0,2756	0,2731	0,2706
110	0,2682	0,2658	0,2635	0,2612	0,2589	0,2567	0,2545	0,2524	0,2503	0,2482
120	0,2462	0,2442	0,2422	0,2403	0,2384	0,2365	0,2347	0,2328	0,2311	0,2293
130	0,2276	0,2259	0,2242	0,2225	0,2209	0,2193	0,2177	0,2162	0,2147	0,2132
140	0,2117	0,2102	0,2088	0,2074	0,2060	0,2046	0,2033	0,2019	0,2006	0,1993
150	0,1981									


ПРИЛОЖЕНИЕ Г Эквивалентная шероховатость трубопровода

Вид трубопровода, материал	Состояние, условия эксплуатации	Кэ
Цельнотянутые стальные	Новые	0,02- 0,1
Теплофикационные перегретого пара и водяные при наличии деаэрации и химочистки		0,12
Пароводяные, насыщенного пара и водяных теплопроводов при незначительных утечках и деаэрации подпитки		0,20
Водяные системы отопления		0,20
Водопроводные в эксплуатации		1,2-1,5
Умеренно коррозированные		0,4
После нескольких лет эксплуатации в различных условиях		0,15 – 1,0
Водяные теплопроводы без деаэрации и химочистки подпитки		1,0
Цельносварные стальные	Новые и старые в хорошем состоянии	0,04- 0,1
	Бывшие в эксплуатации с равномерной коррозией	0,15
Стальные оцинкованные	Новые с чистой оцинковкой	0,07 – 0,1
	Обычная оцинковка	0,1 – 0,15

Примечания:

- 1 Данные заимствованы из справочника «Идельчик И.Е. Справочник по гидравлическим сопротивлениям .-М.: Машиностроение, 1992.
- 2. Точные данные эквивалентной шероховатости трубопровода определять в соответствии с данными из ГОСТ 8.563.

ПРИЛОЖЕНИЕ Д График к определению гидродинамического коэффициента $K_{\Gamma min}$

Отдел продаж:

г. Москва

+7 (495) 744-44-88

+7 (499) 962-42-42

e-mail: encont@mail.ru

www.us800.ru

www.promrezerv.ru

Техподдержка, сервис, поверка:

г.Чебоксары

+7 (8352) 45-81-12 e-mail: us800@mail.ru

www.encont.ru

РАСХОДОМЕР - СЧЕТЧИК ЖИДКОСТИ УЛЬТРАЗВУКОВОЙ

US-800

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ, МОНТАЖУ, ПОВЕРКЕ