ЗАДАЧИ ДИФРАКЦИИ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ: НА АНИЗОТРОПНОЙ ТРЁХСЛОЙНОЙ ДИАФРАГМЕ И АНИЗОТРОПНОЙ n-СЛОЙНОЙ ДИАФРАГМЕ В ПРЯМОУГОЛЬНОМ ВОЛНОВОДЕ

ДЕРЕВЯНЧУК Екатерина Дмитриевна кандидат физико-математических наук, доцент ЛАЗАРЕВ Олег Андреевич

студент

ФГБОУ ВО «Пензенский государственный университет» г. Пенза. Россия

Данная работа посвящена двум задачам дифракции: задаче дифракции электромагнитной волны на анизотропной трёхслойной диафрагме и задаче дифракции электромагнитной волны на анизотропной п-слойной диафрагме в прямоугольном волноводе. Задачи сведены к краевым задачам для системы уравнений Максвелла. Получены аналитические решения обеих задач дифракции. Ключевые слова: задача дифракции, электромагнитная волна, анизотропный материал.

Данная работа является продолжением работы Е.Д. Деревянчук, О.А. Лазарева «Задачи дифракции электромагнитной волны: на анизотропной однослойной диафрагме и анизотропной двухслойной диафрагме в прямоугольном волноводе»[1]. В отличие от предыдущей работы авторов, в данной работе исследованы задачи дифракции для трёхслойной диафрагмы и для общего случая – *n*слойной анизотропной диафрагмы.

Постановка прямой задачи: требуется по известной амплитуде A падающего поля, известной магнитной проницаемости μ_j и диэлектрической проницаемости ε_j и известным толщинам l_j каждого слоя диафрагмы найти электромагнитное поле в волноводе.

1. Решение задачи дифракции для трехслойной анизотропной диафрагмы. В случае трёхслойной диафрагмы (рисунок 1).

Рисунок 1. Трехслойная диафрагма в прямоугольном волноводе

Компоненты электромагнитного поля имеют вид: электрического поля

$$E_{y} = \begin{cases} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} + Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} + D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1}\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{2}e^{-i\gamma_{2}x_{3}} + D_{2}e^{i\gamma_{2}x_{3}}\right), & l_{1} < x_{3} < l_{2}\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{3}e^{-i\gamma_{2}x_{3}} + D_{3}e^{i\gamma_{2}x_{3}}\right), & l_{2} < x_{3} < l_{3}\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) Fe^{-i\gamma_{0}x_{3}}, & x_{3} > l_{3} \end{cases}$$
(1)

магнитного поля:

$$H_{x} = \begin{cases} \frac{-i\gamma_{0}}{\omega} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} - Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ \frac{-i\gamma_{1}}{\omega\mu_{11}^{(1)}} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} - D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1} \\ \frac{-i\gamma_{2}}{\omega\mu_{11}^{(2)}} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{2}e^{-i\gamma_{2}x_{3}} - D_{2}e^{i\gamma_{2}x_{3}}\right), & l_{1} < x_{3} < l_{2} \end{cases}$$
(2)
$$\frac{-i\gamma_{3}}{\omega\mu_{11}^{(3)}} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{3}e^{-i\gamma_{3}x_{3}} - D_{3}e^{i\gamma_{3}x_{3}}\right), & l_{2} < x_{3} < l_{3} \\ \frac{-i\gamma_{0}}{\omega} \sin\left(\frac{\pi x_{1}}{\alpha}\right) Fe^{-i\gamma_{0}x_{3}}, & x_{3} > l_{3} \end{cases}$$
(4)
$$H_{z} = \begin{cases} -\frac{i}{\omega}\frac{\pi}{\alpha}\cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} + Be^{i\gamma_{0}x_{3}}\right), & l_{2} < x_{3} < l_{1} \\ -\frac{i}{\omega\mu_{33}^{(1)}}\frac{\pi}{\alpha}\cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} + D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1} \\ -\frac{i}{\omega\mu_{33}^{(2)}}\frac{\pi}{\alpha}\cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{2}e^{-i\gamma_{2}x_{3}} + D_{2}e^{i\gamma_{2}x_{3}}\right), & l_{1} < x_{3} < l_{2} \end{cases}$$
(3)
$$-\frac{i}{\omega\mu_{33}^{(2)}}\frac{\pi}{\alpha}\cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{3}e^{-i\gamma_{3}x_{3}} + D_{3}e^{i\gamma_{3}x_{3}}\right), & l_{2} < x_{3} < l_{3} \\ -\frac{i}{\omega\mu_{33}^{(2)}}\frac{\pi}{\alpha}\cos\left(\frac{\pi x_{1}}{\alpha}\right) Fe^{-i\gamma_{0}x_{3}}, & x_{3} > l_{3} \end{cases}$$

Решение задачи дифракции для трёхслойной анизотропной диафрагмы имеет вид (1) - (3), где коэффициенты $F, C_j, D_j, (j = 1, ..., n)$, B определяются по формулам, представленным в предыдущей работе авторов.

2. Решение задачи дифракции для n-

слойной анизотропной диафрагмы.

Получим компоненты электромагнитного поля для n-слойной диафрагмы (рисунок 2).

Компонента электрического поля рассчитывается по формуле (4), компоненты магнитного поля по формулам (5)-(6).

Рисунок 2. *N*-слойная диафрагма в прямоугольном волноводе

$$E_{y} = \begin{cases} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} + Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} + D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1}\\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{2}e^{-i\gamma_{2}x_{3}} + D_{2}e^{i\gamma_{2}x_{3}}\right), & l_{1} < x_{3} < l_{2}\\ \dots & \\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{j}e^{-i\gamma_{j}x_{3}} + D_{j}e^{i\gamma_{j}x_{3}}\right), & l_{j} < x_{3} < l_{j+1}, j \in (3; n-1)\\ \dots & \\ \sin\left(\frac{\pi x_{1}}{\alpha}\right) Fe^{-i\gamma_{0}x_{3}}, & x_{3} > l_{n} \end{cases}$$

$$H_{x} = \begin{cases} \frac{-i\gamma_{0}}{\omega} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} - Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ \frac{-i\gamma_{1}}{\omega\mu_{11}^{(1)}} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} - D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1} \\ \dots & \\ \frac{-i\gamma_{j}}{\omega\mu_{11}^{(1)}} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{j}e^{-i\gamma_{j}x_{3}} - D_{j}e^{i\gamma_{j}x_{3}}\right), & l_{j-1} < x_{3} < l_{j}, j \in (3; n-1) \\ \dots & \\ \frac{-i\gamma_{0}}{\omega} \sin\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} + Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ -\frac{i\pi}{\omega \alpha} \cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(Ae^{-i\gamma_{0}x_{3}} + Be^{i\gamma_{0}x_{3}}\right), & x_{3} < 0\\ -\frac{i\pi}{\omega \mu_{33}^{(1)}} \frac{\pi}{\alpha} \cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{1}e^{-i\gamma_{1}x_{3}} + D_{1}e^{i\gamma_{1}x_{3}}\right), & 0 < x_{3} < l_{1} \\ -\frac{i\pi}{\omega \mu_{33}^{(1)}} \frac{\pi}{\alpha} \cos\left(\frac{\pi x_{1}}{\alpha}\right) \left(C_{j}e^{-i\gamma_{j}x_{3}} + D_{j}e^{i\gamma_{j}x_{3}}\right), & l_{j} < x_{3} < l_{j+1}, j \in (3; n-1) \end{cases} \right)$$

Таким образом, электромагнитное поле в волноводе имеет вид (4)-(6) в случае многослойной (*n*-слойной) анизотропной диафрагмы.

3. Численные результаты.

В качестве значений тензоров будут выбраны значения близкие к существующим материалам. Задача 1. Предположим, что параметры волновода: a = 2 см, высота b = 1 см. Точные значения: круговая частота $\omega_0 = 2.5$, что соответствует частоте $f_1 = 11.94$ ГГц, $\omega_1 =$

1.7. *f*₂ = 8.12 ГГц. Первая и вторая секции заполнены анизотропными материалами с тензорами диэлектрической проницаемости и магнитной проницаемости соответственно:

$$\hat{\varepsilon}^{(1)} = \begin{pmatrix} 1, 1 - i\frac{0,01}{\omega} & 0 & 0\\ 0 & 1, 2 - i\frac{0,01}{\omega} & 0\\ 0 & 0 & 28 - i\frac{0,01}{\omega} \end{pmatrix}$$
$$\hat{\varepsilon}^{(2)} = \begin{pmatrix} 11, 6 - i\frac{0,01}{\omega} & 0 & 0\\ 0 & 9, 4 - i\frac{0,01}{\omega} & 0\\ 0 & 0 & 9, 4 - i\frac{0,01}{\omega} \end{pmatrix}$$
$$\hat{\mu}^{(1)} = \begin{pmatrix} 1, 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{pmatrix} \hat{\mu}^{(2)} = \begin{pmatrix} 4 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 1, 1 \end{pmatrix}$$

Решение задачи 1: Графики компонент электрического и магнитного полей представлены на рисунках (3-11).

Рисунок 3. Электрическое поле E_x : график вещественной части $\text{Re}(E_x)$

Рисунок 4. Электрическое поле E_x : график мнимой части $Im(E_x)$

Рисунок 5. Проекция компоненты электрического поля E_x на плоскость XOZ: (а) график вещественной части $\text{Re}(E_x)$ и (б) график мнимой части $\text{Im}(E_x)$

Рисунок 7. Компонента вектора магнитного поля H_x: график вещественной части Re(H_x)

Рисунок 8. Компонента вектора магнитного поля H_x : график мнимой части $Im(H_x)$

Рисунок 9. Компонента вектора магнитного поля H_z: график вещественной части Re(H_z)

Рисунок 10. Компонента вектора магнитного поля H_z: график мнимой части Im(H_z)

Рисунок 11. Проекция компоненты вектора магнитного поля H_z на плоскость XOZ: (а) график вещественной части Re(H_z) и (б) график мнимой части Im(H_z)

Таким образом, электромагнитное поле для двухслойной анизотропной диафрагмы в волноводе имеет вид как показано на рисунках (3)-(4), (7)-(10) в трёхмерном пространстве и имеет вид как показано на рисунках (5)-(6) и (11) в проекции на плоскость *XOZ*.

Ключевым итогом данной работы является получение аналитического решения задачи дифракции для *n*-слойной анизотропной диафрагмы. Алгоритм задачи реализован в виде комплекса программ. Комплекс вычислений тестирован на тестовой задаче. Анализ результатов показал, что поведение электро-

магнитного поля зависит от структуры материалов, которыми заполнены слои диафрагмы. Результаты работы могут быть использованы при исследовании современных видов материалов.

СПИСОК ЛИТЕРАТУРЫ

1. Деревянчук Е.Д. Лазарев О.А. Задачи дифракции электромагнитной волны: на анизотропной однослойной диафрагме и анизотропной двухслойной диафрагме в прямоугольном волноводе // Общество. – 2024. – № 2(33).

2. Вайнштейн Л.А. Электромагнитные волны. – М.: Радио и связь, 1988. – 440 с.

ELECTROMAGNETIC WAVE DIFFRACTION PROBLEMS: ON AN ANISOTROPIC THREE-LAYER DIAPHRAGM AND ANISOTROPIC N-LAYER DIAPHRAGM IN A RECTANGULAR WAVEGUIDE

DEREVYANCHUK Ekaterina Dmitrievna Candidate of Science in Physics and Mathematics, Associate Professor LAZAREV Oleg Andreevich Student Penza State University Penza, Russia

This work is devoted to two diffraction problems: the problem of diffraction of an electromagnetic wave on an anisotropic three-layer diaphragm and the problem of diffraction of an electromagnetic wave on an anisotropic n-layer diaphragm in a rectangular waveguide. The problems are reduced to boundary value problems for the system of Maxwell's equations. Analytical solutions of both diffraction problems are obtained. **Keywords**: diffraction problem, electromagnetic wave, anisotropic material.