ПОСТРОЕНИЕ МОДЕЛИ ВИДОВОГО РАЗНООБРАЗИЯ КОШАЧЬИХ ДЛЯ ГОРОДСКОГО ЗООПАРКА

ВЕРХОГЛЯДОВА Александра Владимировна

магистрант

ФГБОУ ВО «Донской государственный технический университет» г. Ростов-на-Дону, Россия

Данный подход в формировании видового разнообразия зоопарка является новейшим, представляя собой математически обоснованные выводы, с уже известными средними расходами на покупку и содержание животного.

Ключевые слова: математическая модель, видовое разнообразие, оптимизация, построение модели, кошачьи, городской зоопарк.

В современном обществе, где каждый может стать предпринимателем, обладая определённым набором знаний, выигрывает понимающий внутренние механизмы рынка, которые можно представить в виде математической модели, соответствующих формул и законов. Основная идея работы состоит в привлечении математических методов и принятия решений в области прикладных задач.

Перед началом построения модели были проведены дополнительные исследования физиологических особенностей, которые могли бы помешать корректному построению модели. Далее собраны данные по 40 лучших зоопаркам мира на предмет видового разнообразия. Выбраны основные параметры оптимизации и ограничения.

Консолидированные данные собираем в основную таблицу. Целевая функция представляет собой сумму ключевых видов затрат и выбранных коэффициентов. Основным показателем, по которому будем оценивать результаты оптимизации, является количество особей. Предположим, что в каждом виде нам необходимо иметь 2 особи (1 мужского пола, 1 женского). Следовательно, ограничение для оптимизации складывается из количества особей, то есть необходимое количество видов для конкретного сценария умноженное на 2.

Так же нам необходимо ввести ограничения. Первое ограничение — количество видов, которое считается из количества особей. В оптимальном (среднем) варианте модели оно равно 12, так как количество видов 6. Второе ограничение — вес, или коэффициент привлекательно-

сти, который мы аналитически нашли. И группа ограничений, которая учитывает возраст, редкость и сложность содержания.

Введём дополнительное ограничение, которое будет учитывать «повторяющиеся» виды, то есть видов львов в нашем списке 3, но в нашем случае необходим 1 или 0.

Так же вводим ограничения на продолжительности жизни животных, редкость и сложность содержания. Для среднего зоопарка находим этим параметры как среднеарифметическое значение соответствующих параметров по всем зоопаркам.

Применяем встроенный поиск решений, выбрав симплекс-метод, как способ поиск оптимального решения. Получаем следующий результат: азиатский лев, гепард, кот-рыболов, лилигр, пума и ягуар. Данный результат объясняется несколькими параметрами:

- 1. Продолжительности жизни. Большие кошки дольше живут, следовательно не будет необходимости снова тратить деньги на покупку новой особи.
- 2. Редкость и привлекательность. Обычно, большие кошки имеют большую привлекательности, чем маленькие, пусть и редкие виды. Посетителям будет интереснее увидеть больших представителей кошачьих, особенного редких, таких как лилигр. То всё же возрастает ценность зоопарка, в котором обитают редкие животные, о которых мало кто слышал.
- 3. Сложность содержания. Выбранные виды, конечно, занимаются большую площадь и потребляют больше мяса, но их легче содержать и приучить к людям. Некоторые маленькие виды кошачьих совсем нельзя при-

учить к жизни с людьми. Дополнительное преимущество видится в возможности повышения численности исчезающих видов, в

поддержания численности их популяции, возможности передачи потомства в другие зоопарки.

данные по оптимизации

Таблица 1

Вид	Цена (тыс. руб)	Необходимая площадь (м. кв)	Цена площади	Рацион	Время жизни	Bec	Общая стои- мость
Азиатский лев	400 000	70	3 500 000	4 000	30	175	47 820 000
Амурский тигр	2 000 000	70	3 500 000	5 000	26	240	53 080 000
Африканский лев	380 000	70	3 500 000	4 000	30	200	47 800 000
Барханный кот	460 000	6	300 000	225	13	2	1 830 550
Белый лев	10 400 000	70	3 500 000	4 000	30	200	57 820 000
Белый тигр	8 000 000	70	3 500 000	5 000	26	240	59 080 000
Бенгальская кошка	350 000	5	250 000	200	21	7	2 137 200
Бенгальский тигр	750 000	70	3 500 000	5 000	26	220	51 830 000
Восточно-сибирская рысь	100 000	45	2 250 000	2 000	20	21	16 990 000
Гепард	4 500 000	80	4 000 000	400	30	53	12 892 000
Дальневосточный леопард	2 000 000	60	3 000 000	1 750	21	50	18 450 500
Дальневосточный лесной кот	125 000	5	250 000	200	20	6	1 839 000
Длиннохвостая кошка	1 000 000	7	350 000	275	20	4	3 363 000
Дымчатый леопард	700 000	7	350 000	300	20	19	3 246 000
Индокитайский лео- пард	1 000 000	60	3 000 000	1 750	21	68	17 450 500
Индокитайский тигр	1 500 000	70	3 500 000	5 000	26	175	52 580 000
Кавказский леопард	900 000	60	3 000 000	1 750	21	70	17 350 500
Камышовый кот	800 000	6	300 000	275	15	10	2 609 750
Канадская рысь	40 000	45	2 250 000	2 000	20	11	16 930 000
Каракал	400 000	45	2 250 000	2 000	20	16	17 290 000
Кот Темминка	1 000 000	50	2 500 000	575	23	14	8 340 350
Кот-рыболов	500 000	10	500 000	453	25	12	5 144 950
Кошка Жоффруа	800 000	7	350 000	275	14	5	2 559 100
Леопард	600 000	60	3 000 000	1 750	21	68	17 050 500
Лилигр	3 000 000	80	4 000 000	6 000	28	300	68 488 000
Малайский тигр	1 100 000	70	3 500 000	5 000	26	120	52 180 000
Манул	750 000	7	350 000	275	15	4	2 609 750
Оцелот	1 200 000	20	1 000 000	200	20	11	3 664 000
Персидский леопард	1 700 000	60	3 000 000	1 750	21	80	18 150 500
Пума	300 000	50	2 500 000	1 000	20	65	10 120 000
Рыжая рысь	100 000	45	2 250 000	2 000	20	9	16 990 000
Рысь	230 000	45	2 250 000	2 000	20	22	17 120 000
Саванна	1 000 000	45	2 250 000	450	20	10	6 544 000
Сервал	600 000	45	2 250 000	450	20	13	6 144 000
Сибирская рысь	200 000	45	2 250 000	2 000	20	22	17 090 000
Снежный барс	4 500 000	50	2 500 000	1 000	25	55	16 150 000
Степной кот	500 000	7	350 000	275	15	5	2 359 750
Суматранская кошка	1 500 000	10	500 000	450	15	3	4 470 500
Суматранский тигр	2 000 000	70	3 500 000	5 000	26	120	53 080 000
Флоридская пума	1 800 000	50	2 500 000	1 000	20	65	11 620 000
Черноногая кошка	800 000	10	500 000	450	15	2	3 770 500
Ягуар	700 000	60	3 000 000	1 875	25	75	20 856 250
Ягуарунди	1 800 000	7	350 000	275	15	7	3 659 750

Продолжение таблицы 1

Редкость	Сложность содержания	Число особоей		Цена за особей	Цена пло- щади за особей	Цена раци- она за осо- бей	Общая стоимость за особей	ЦФ
4	3	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0
5	3	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
5	3	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0
2	2	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
5	3	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
2	3	0	0	0	0	0	0	0
3	2	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
10	3	0	0	0	0	0	0	0
4	3	2	0	2 200 000	7 000 000	95 160 000	104360000	10436000
2	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
4	3	1	1	1 700 000	3 000 000	13 450 500	18150500	2178060
1	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	3	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0
4	3	0	0	0	0	0	0	0
5	3	2	0	4 000 000	7 000 000	95 160 000	106160000	10273548,39
5	3	0	0	0	0	0	0	0
3	3	0	0	0	0	0	0	0
2	3	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0
								22887608,39

Когда мы закончили построение модели и определили, какие виды будет максимально выгодно содержать в зоопарке, необходимо

провести сравнение с реальными зоопарками. Для этого воспользуемся корреляционным анализом данных после построения матрицы.

Таблица 2

КОРРЕЛЯЦИЯ СРЕДНЕГО ЗООПАРКА

Zurich Zoo	Jerusalem Zoo	Biopark of Valencia	Moscow Zoo	Novosibirsk Zoo	The State Zoologi- cal Park of Udmur- tia in Izhevsk	Yaroslavl Zoo
1	1	0	1	0	0	0
1	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	0	1	0
0	0	0	0	1	1	0
0	1	0	1	1	0	1
0	0	0	1	1	0	0
0	0	0	0	1	1	0
0	0	0	0	1	0	0
0	0	0	0	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	1	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	0	1	0	0
0	0	1	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	0	0	1	0	0
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	0	0	1	0	0
0	0	0	1	0	0	1
0	0	0	0	0	0	0
0	0	0	0	1	1	1
0	0	0	0	1	0	0
1	0	0	1	1	0	0
0	0	0	1	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	1	1	0
0	0	0	1	1	0	0
-0,120761473	-0,120761473	-0,09739145	-0,093628168	0,227720531	0,112938488	0,036560566

Таблица 2 демонстрирует, что средний зоопарк имеет некоторую корреляцию (около 0,3) со следующими зоопарками: Иерусалимский зоопарк, Philadelphia Zoo, St. Louis Zoo.

Анализируя расходы, которые будут необходимы на приобретение и содержание

животного, можно заметить, что наша модель имеет среднее значение, но при этом выбранные животные могут увеличить посещаемость зоопарка и повысить его вклад в фонд защиты животных, поддержания численности редких и вымирающих видов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Основы математического моделирования: учебное пособие / С.В. Звонарев. Екатеринбург: Изд-во Урал. ун-та, 2019. 112 с.
- 2. Математическое моделирование. Учебно-методическое пособие / сост. Н.Н. Максимова. Благовещенск: Изд-во АмГУ, 2019 88 с.
- 3. Cамарский A.A., Mихайлов A.П. Математическое моделирование: Идеи. Методы. Примеры. -2-е изд., испр. М.: Физматлит, 2001 320 с.
- 4. Плотников С.А., Семенов Д.М., Фрадков А.Л. Математическое моделирование систем управления. СПб: Университет ИТМО, 2021 193 с.
- 5. Лазуренко Р., Кошлякова И., Растрыгина Т., Березина А. Математическое моделирование показателей удовлетворенности потребителя и результативности СМК организации // Вестник Донского государственного технического университета. 2010. № 10(5). С. 762-768.