Джендубаев А.-З. Р. Алиев И. И.

MATLAB, Simulink и SimPowerSystems в электроэнергетике

Учебное пособие

для студентов, обучающихся по направлению подготовки 140400.62 "Электроэнергетика и электротехника", профиль "Электроснабжение"

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

Джендубаев А.-З. Р. Алиев И. И.

MATLAB, Simulink и SimPowerSystems в электроэнергетике

Учебное пособие

для студентов, обучающихся по направлению подготовки 140400.62 "Электроэнергетика и электротехника", профиль "Электроснабжение"

Черкесск 2014 УДК 000000

ББК 00000 И00

> Рассмотрено на заседании кафедры "Электроснабжение". Протокол № _____ от «___»____ 2014 г. Рекомендовано к изданию редакционно-издательским советом СевКавГГТА. Протокол № _____ от «___»____ 2014 г.

Рецензенты: Эркенов Н. Х. – к. т. н., доцент кафедры "Электроснабжение"

Джендубаев А.-З. Р.

И00 MATLAB, Simulink и SimPowerSystems в электроэнергетике: учебное пособие для студентов, обучающихся по направлению подготовки 140400.62 "Электроэнергетика и электротехника", профиль "Электроснабжение" / Джендубаев А.-З. Р., Алиев И. И. – Черкесск: БИЦ СевКавГГТА, 2014. – 136 с.

В учебном пособии дано краткое описание системы МАТLAB R2014b (академическая версия), системы Simulink – главного пакета расширения МАТLAB, реализующего визуально блочное имитационное моделирование, как самого общего, так и конкретного назначения, системы SimPowerSystems Specialized Technology – расширения Simulink, предназначенной для моделирования электроэнергетических и электротехнических устройств. Рассмотрена методика создания программ MATLAB, моделей Simulink и SimPowerSystems. Представлены примеры расчета с использованием этих программных продуктов. Дано краткое описание соответствующих библиотек.

Учебное пособие предназначено для студентов, обучающихся по направлению подготовки 140400.62 "Электроэнергетика и электротехника", профиль "Электроснабжение".

УДК 000000 ББК 00000

© Иванов А. В., 2014
© ФГБОУ ВПО СевКавГГТА, 2014

СОДЕ	ЕРЖА	НИЕ
------	------	-----

Введение	7
1. ОСНОВЫ РАБОТЫ С MATLAB, Simulink и SimPowerSystems	. 7
1.1. MATLAB	7
1.1.1. Запуск MATLAB и работа в режиме диалога	7
1.1.2. Простые вычисления в MATLAB	7
1.1.3. Работа с комплексными числами	9
1.1.4. Формирование векторов и матриц	11
1.1.5. Двумерная и трехмерная графика MATLAB	15
1.1.6. Работа с редактором т-файлов	16
1.1.7. Уловный onepamop ifelseelseend. Циклы muna forend u whileend. Onepamopы break, continue, return, pause	19
1.1.8. Решение системы дифференциальных уравнений	24
1.1.8.1. Трансформатор	24
1.1.8.2. Двигатель постоянного тока	26
1.1.8.3. Асинхронный двигатель с короткозамкнутым ротором	29
1.2. Simulink.	35
1.2.1. Система моделирования Simulink	35
1.2.2. Состав библиотеки Simulink	35
1.2.3. Создание, редактирование и запуск модели Simulink	, 44
1.3. SimPowerSystems	56
1.3.1. Система моделирования SimPowerSystems	56
1.3.2. Создание, редактирование и запуск модели SimPowerSystems	57
1.3.3. Состав библиотеки SimPowerSystems	63

2. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ, УСТРОЙСТВ И СИСТЕМ

ЭЛЕКТРОЭНЕРГЕТИКИ	78
2.1. Моделирование переходных процессов в индуктивности, конденсаторе и выпрямителе	78
2.2. Моделирование трансформаторов	95
2.2.1. Однофазный трансформатор	95
2.2.1. Трехфазный трансформатор	103
2.3. Моделирование асинхронного двигателя с короткозамкнуты ротором	115
2.4. Моделирование трансформаторных подстанций 10/0,4 кВ	120
2.5.1. Однотрансформаторная подстанция	120
2.5.2. Двухтрансформаторная подстанция	126
Список литературы	135

Введение

Цель этого учебного пособия – научить студентов использовать современный программный продукт **MATLAB** и её расширения **Simulink** и **SimPowerSystems** при осуществлении расчетов, связанных с лабораторными работами, курсовым и дипломным проектированием, а также научными исследованиями.

1. ОСНОВЫ РАБОТЫ С MATLAB, Simulink и SimPowerSystems

1.1. MATLAB

1.1.1. Запуск MATLAB и работа в режиме диалога

Для запуска программы необходимо на рабочем столе найти ярлык

МАТLAВ и щелкнуть его два раза. На экране появится основное окно рабочей среды МАТLAВ (рис. 1.1), которое содержит: строку заголовка (MATLAB R2014b); Toolstrip (Панель инструментов); Command Window (Окно команд); Workspace (Рабочая область); Current Folder (Текущая папка); Command History (История команд); Details (Подробности о файле, выделенном в окне Current Folder).

На панели инструментов (**Toolstrip**) располагаются шесть вкладок – **HOME** (Главная), **PLOTS** (Графики), **EDITOR** (Редактор), **APPS** (Приложения), **PUBLISH** (Опубликовать) и **VIEW** (Вид).

1.1.2. Простые вычисления в MATLAB

Более детальное изучение многочисленных инструментов MATLAB будем осуществлять по мере необходимости, а пока приступим к непосредственному её использованию. Предположим, что у нас есть переменные a = 10 и b = 20, которые необходимо сложить. Для этого в **Command Window** (Окне команд) после символа >> вводим каждую переменную на новой строке (в конце первых двух строк ставим знак (;), т.е. запрет вывода в окно команд) и получаем ожидаемый результат:

```
>> a=10;
>> b=20;
>> c=a+b
c =
30.
```

Переменные, их значения и сумму можно набрать в одной строке: >> a=10; b=20; c=a+b c = _______30.

Рис. 1.1

Со	mmand Window	$\overline{\mathbf{v}}$	Workspace		\odot
	>> a=10; b=20; c=a+b		Name 🔺	Value	
			🖿 a	10	
	c =		b	20	
			ш с	30	
	30		•		•
c			Command History		\odot
Jx	>>		% 09.11.2014 11:37	%	•
			a=10;		
			b=20;		
			c=a+b		
			a=10;		
			a=10; b=20; c=a+b		Ψ.

Рис. 1.2

Следует отметить, что информация о переменных автоматически появилась в окне Workspace (Рабочая область), а о действиях – в окне Command History (История команд) (рис. 1.2). При необходимости в окне Workspace переменную можно удалить, изменить её значение (два раза нажать на переменную), можно сохранить (нажать правую кнопку мыши и выбрать Save) или очистить окно, нажав на Ссеат Workspace (Вкладка HOME, область инструментов VARIABLE).

Используя данные в окне **Command History**, можно вывести в окно **Command Window** любую команду. Для этого достаточно выделить необходимую команду в окне **Command History** и щелкнуть два раза. Аналогичные результаты можно получить, если, находясь в окне **Command Window**, использовать стрелки \uparrow и \downarrow клавиатуры.

```
Для очистки окна Command Window необходимо нажать 

Clear Commands • (Вкладка НОМЕ, область инструментов CODE).
```

1.1.3. Работа с комплексными числами

В **МАТLAB** имеется возможность вести расчеты с комплексными числами, которые очень часто используются в электротехнике и электроэнергетике. Для обозначения мнимой единицы используются два зарезервированных имени – **i** и **j**. Более приемлемым вариантом является **i**, т.к. он используется **MATLAB** при выводе результатов [1, 2, 3, 4]:

Пример 1.1

Определить установившийся ток короткого замыкания однофазного трансформатора (комплексное и абсолютное значения), построить векторную диаграмму и определить фазовый сдвиг между током и напряжением. Напряжение сети: 220 В. Вектор напряжения направлен по мнимой оси. Параметры короткого замыкания трансформатора: $R_k = 2Om$; $X_k = 3Om$.

Решение. Первая часть задачи решается достаточно просто (Рис. 1.3):

>> I_kz=(0+220i)/(2+3i) I_kz =

50.7692 +33.8462i

Вторая требует вызова соответствующей функции. Для этого слева от знака >> нажимаем *f*. Открывается список категорий, по которым систематизированы функции (Рис. 1.3).

Рис. 1.3

Рис. 1.4

В данном случае воспользуемся функцией **compass**, которая после двух щелчков вставляется в **Command Window**. При необходимости можно посмотреть пример использования этой функции. Для этого переходим на правое окно **compass** и нажимаем **More Help**.... Результат построения представлен на рис. 1.4.

Для определения абсолютного значения тока и фазового сдвига между напряжением и током воспользуемся функциями **abs** и **angel** категории **Complex Numbers** (Puc. 1.5).

Следует отметить, что в окне **Command Window** данные можно выделять и копировать (Ctrl+C), однако вставлять можно только после знака >>. Окончательный листинг программы *примера* 1.1 представлен на рис. 1.6.

1.1.4. Формирование векторов и матриц

Простейший способ задания вектора и матрицы:

>> a=[1	234	4]				
a =						
1	2		3		4	
>> b=[1	23;	45	6;	7	89]	
b =						
1	2		3			
4	5		6			
7	8		9.			

Search for functions		Q
Categories		*
C MATLAB		
🗎 Language Fundamenta	ls	E
Mathematics		
Elementary Math		_
arithmetic		
🗀 Trigonometry		
Exponents and Lo	ogarithms	
🖨 Complex Numbe	rs	
fx abs	Absolute value and complex magnitude	
🕅 angle	Phase angle	
<i>f</i> ≭ complex	Create complex array	
<i>f</i> ≭ conj	Complex conjugate	
∫≭ cplxpair	Sort complex numbers into complex conjugate pai.	
<i>f</i> × i	Imaginary unit	
<i>f</i> × imag	Imaginary part of complex number	
<i>f</i> x isreal	Determine if array is real	
fx j	Imaginary unit	
<i>f</i> ≍ real	Real part of complex number	
<i>f</i> ≈ sign	Signum function	
f_{x} unwrap	Correct phase angles to produce smoother phase	
🗀 Discrete Math		Ŧ
	All installed products	

Рис. 1.5

Рис. 1.6

Обращение к элементам матрицы (вектора):

```
>> b(2,3)
ans =
6
```

Изменение значения элемента:

```
>> b(2,3)=100
b =
           2
     1
                  3
           5
                100
     4
     7
           8
                  9
   Элементы вектора и матрицы можно разделять запятой:
>> c=[6+5<sup>2</sup>, 4-42i, 1+4+3i]
c =
  31.0000 + 0.0000i 4.0000 -42.0000i 5.0000 + 3.0000i.
   Вектор можно задать следующим способом:
>> x=1:2:12
x =
           3
                  5
                        7
                                    11.
     1
                              9
Здесь шаг равен 2. Если шаг равен 1, то
>> x=1:12
x =
     1
         2
             3 4
                      5
                        6789
                                           10
                                                 11
                                                      12.
   Сумма и разность двух векторов:
>> x=1:3, y=4:6, x+y, x-y
x =
           2
     1
                  3
y =
           5
     4
                  6
ans =
           7
                  9
     5
ans =
          -3
                 -3.
    -3
   Для транспонирования вектора применяется апостроф ('):
>> x'
ans =
     1
     2
     3.
   Скалярное произведение двух векторов (поэлементное умножение):
>> x.*y
ans =
           4
                 10
                       18
```

Поэлементное возведение в степень:

27

>> x.^3 ans = 1 8

Поэлементное деление матриц (деление элементов первой матрицы на элементы второй и наоборот):

Транспонирование матрицы:

4

5

6

>> X' ans = 1 2 3

Обращение матрицы (обратная матрица):

>> A=[1 -2 3; 1 1 -8; 2 -6 -3] A = 1 -2 3 1 -8 1 2 -6 -3 >> I=inv(A) I = 0.4898 1.0408 -0.2653 0.1837 -0.22450.2653 0.1633 -0.0408 -0.0612

Решение системы линейных уравнений:

 $x_1 - 2x_2 + 3x_3 = 10$ $x_1 + x_2 - 8x_3 = 9$ $2x_1 - 6x_2 - 3x_3 = -7$ >> A=[1 -2 3; 1 1 -8; 2 -6 -3]; b=[10;9;-7]; >> x_1=A\b % Первый вариант >> x_2 = inv(A) *b % Второй вариант x_1 = 16.6735 5.8776 1.6939 x_2 = 16.6735 5.8776 1.6939

1.1.5. Двумерная и трехмерная графика MATLAB

Вывод синусоидальной зависимости с помощью функции MATLAB plot(x,y):

>> x=0: pi/100: 4*pi; y=sin(x); plot(x,y).

Результат построения представлен на рис. 1.7.

Аналогичный результат можно получить иным способом. Для "чистоты" построения удаляем содержимое окна **Workspace**. С этой целью переходим к этому окну, нажимаем правую кнопку и в выпадающем меню выбираем **Clear Workspace**. После этого повторно создаем вектора:

>>x=0: pi/100: 4*pi; y=sin(x).

Нажимаем клавишу **Ctrl**, переходим в окно **Workspace**, щелчком выделяем вектора **x** и **y**. Переходим во вкладку **Plots** (Puc. 1.1), нажимаем **Plot** и получаем синусоидальную зависимость, представленную на рис. 1.7.

Рис. 1.7.

Рис. 1.8

Трехмерный график можно вывести, задав следующие команды: >> x=-2:0.1:2;

```
>> [X, Y]=meshgrid(x);
>> Z=-2*X.*exp(-X.^2-Y.^2);
>> mesh(X,Y,Z)
>> surf(X,Y,Z).
```

В результате получим график, представленный на рис. 1.8.

Как и в случае построения двухмерного графика, можно воспользоваться вкладкой **Plots.** Для этого в окне **Workspace** выделим вектора **X**, **Y**, **Z**. После этого активизируется вкладка построения графиков **Plots**, в которой можно выбрать интересующий тип трехмерного графика, в том числе и графика, представленного на рис. 1.8.

1.1.6. Работа с редактором т-файлов

Любую последовательность команд можно оформить в виде тфайлов двух типов: Script M-Files (файл-программы) и Function M-Files (файл-функции). Для создания файла первого типа необходимо во вкладке HOME нажать на New Script. При этом открывается окно редактирования безымянного m-файла (Untitled), который необходимо сохранить под другим, удобным для поиска, именем. Если окно редактора **EDITOR** уже открыто, то можно нажать New и выбрать Script или просто нажать +. Имя файла необходимо указывать латинскими буквами без пробелов. Использование кириллицы может привести К возникновению проблем. Нажимаем Save > Save As... во вкладке **EDITOR** и сохраняем файл, например, под именем *Example_1_1*. В окне формулу примера 1.1 И команду построения графика, введем изображенного на рис. 1.4. Если информация о командах имеется в окне истории, то можно её скопировать и перенести в окно EDITOR. После этого нажимаем на стрелку **Run** или на клавишу **F5** и запускаем Script (программу) *Example_1_1*. Результаты её работы представлены на рис. 1.9.

Для создания файла второго типа необходимо во вкладке **НОМЕ** нажать на **New** \rightarrow **Function**. При этом в окне редактора появится текст шаблона функции, который необходимо модифицировать под свои задачи (Рис. 1.10). Предположим, что необходимо создать функцию, которая в качестве входных параметров (**input...args**) получает: напряжение \dot{U} , активное *r* и реактивное *x* сопротивления, в качестве выходных (**output...args**) – ток короткого замыкания \dot{I}_{kz} , абсолютное значение тока $I_{kz,abs}$ и угол φ между напряжением и током.

Рис. 1.9

2	Editor - Untitled*	Θ×
I	Untitled* × +	
1	<pre>[function [output args] = Untitled(input args)</pre>	A
2	\Box %UNTITLED Summary of this function goes here	
3	-% Detailed explanation goes here	Ξ
4		
5	end	-

Рис. 1.10

При этом функция должна построить векторную диаграмму (compass) напряжения и тока. Назовем эту функцию, например, tkz и сохраним её в файле с таким же названием, т.е. tkz. Совпадение названия функции с названием файла является обязательным условием в MATLAB, т.к. при вызове функции из командного окна (Command Window) осуществляется вызов файла, в котором дано описания этой функции. Текст функции, её вызов из командного окна представлен на рис. 1.11.

```
tkz.m × +
 1
      \Box function [I, I abs, Fi] = tkz(U, r, x)
 2
     🕒 % Функция расчета тока короткого замыкания и
 3
       % построения compass графика.
        % Пример вызова функции:
 4
       -%[I kz,I kz abs,Fi kz]=tkz(0+220i,2,3)
 5
        I = U/complex(r, x);
 6
       I abs = abs(I);
 7 -
       compass([I, U])
 8 -
       Fi = angle(U) - angle(I);
 9 -
       end
10 -
                          111
۰.
                                                          •
Command Window
  >> [I kz,I kz abs,Fi kz]=tkz(0+220i,2,3)
  I kz =
    50.7692 +33.8462i
  I kz abs =
      61.0170
  Fi kz =
      0.9828
fx >>
```


Следует отметить, что функцию можно вызвать из m-файла, как и любую другую функцию **MATLAB**. Если необходима информация о функции, достаточно в командном окне набрать **help** и название функции, например, **help tkz** или **help sin**.

1.1.7. Условный onepamop if...else...else...end. Циклы muna for...end u while...end. Onepamopы break, continue, return, pause.

Известно, что согласно седьмому изданию ПУЭ при переменном трёхфазном токе: шина A имеет желтый цвет, шины B и C – зелёный и красный соответственно. Нулевой рабочий (нейтральный) проводник N обозначается голубым цветом.

Пример 1.2.

Используя условный оператор if...else...else...end и оператор цикла for...end, создать программу $Example_1_2$, которая по обозначению шины определяет её цвет.

```
Решение:
% Example 1 2. Программа определения цвета шины по её
обозначению.
for m = 1:10
              % Организация цикла
      %input - оператор ввода, 's'- для ввода строки символов,
    temp = input(' Введите название шины (A; B; C; N): ','s');
    if temp == 'A';
         %disp - оператор вывода
         disp('Шина фазы "А" обозначается желтым цветом.');
         else if temp == 'B';
            disp('Шина фазы "В" обозначается зеленым цветом.')
              else if temp == 'C';
                     disp('Шина фазы "С" обозначается красным
цветом.') % В т-файле текст между '...' указать одной строкой.
                   else if temp == 'N';
                            disp('Нулевой рабочий
(нейтральный) проводник "N" обозначается голубым цветом. )
                       else
                             disp(' Уточнить раскладку
клавиатуры, регистр или букву. ')
                             disp(' Для выхода из цикла
необходимо нажать "Ctrl + C".')
                        end
                   end
             end
     end
```

end

Для создания цикла можно воспользоваться не только оператором **for...end**, но и оператором **while...end.** Рассмотрим его работу на *Примере 1.3*.

Пример 1.3.

Рассчитать внешнюю характеристику трансформатора TM-1000/10 при подключении к нему активно-индуктивной нагрузки с $\cos \varphi_{\text{нагр}} = 0.8$.

Тип,	U_{1H} ,	$U_{2\mu}$,	P_{xx} ,	$P_{\kappa},$	I_{xx} ,	$\mathcal{U}_{\kappa},$	Схема, группа
$\mathbf{S}_{2\mu}, \kappa BA$	кВ	кВ	кВт	кВт	%	%	соединения обмоток
TM 1000	10	0,4	1,9	12,2	1,7	5,5	Ү/Үн-0

Таблица 1.1. Основные технические характеристики трансформатора

Решение.

На основании данных, представленных в таблице 1.1, определим параметры короткого замыкания трансформатора:

 $I_{2_{H}} = \frac{S_{2_{H}}}{\sqrt{3}U_{2_{H}}} = \frac{1000}{\sqrt{3} \cdot 0,4} = 1443A$ – номинальный фазный ток вторичной

обмотки;

 $z_{\kappa} = \frac{U_{2\mu} \cdot u_{\kappa}\%}{\sqrt{3}I_{2\mu}100\%} = \frac{400 \cdot 5,5\%}{\sqrt{3} \cdot 1443 \cdot 100\%} = 0,0088025OM -$ полное сопротивление

короткого замыкания;

 $r_{\kappa} = \frac{P_{\kappa}}{3I_{2\mu}^2} = \frac{12000}{3 \cdot 1443^2} = 0,00192O_{M}$ – активная составляющая полного

сопротивления короткого замыкания;

 $x_{\kappa} = \sqrt{z_{\kappa}^2 - r_{\kappa}^2} = \sqrt{0,0088025^2 - 0,00192^2} = 0,00859OM$ – реактивная составляющая;

 $Z_{\kappa} = r_{\kappa} + x_{\kappa}i = 0,00192 + 0,00859i$ — полное сопротивление короткого замыкания в комплексной форме, здесь *i* — символ для обозначения мнимой части (в **MATLAB** он используется по умолчанию).

Занесем значения линейного напряжения вторичной обмотки в режиме холостого хода, сопротивление короткого замыкания трансформатора и диапазон изменения сопротивления нагрузки. При расчете сопротивление нагрузки с каждой итерацией уменьшается и составляет 80% от предыдущего значения, т.е. **Z_nagp(m)** = 0.8*Z_nagp(m-1) (12-я строка m-файла).

```
% example_1_3. Программа расчета внешней
% xapaктеристики трансформатора TM-1000/10
clear; U_2_XX = 0+400i; Z_k = 0.00192 + 0.00859i;
Z_nagp_max = 12 + 9i;
Z_nagp(1) = Z_nagp_max; m = 1;
while Z_nagp(m) > 0
        I_2(m) = U_2_XX/(sqrt(3)*(Z_k + Z_nagp(m)));
        U 2(m) = sqrt(3)*I 2(m)*Z nagp(m);
```

```
m=m+1;
if m==70 %-для всей. m==24 - для вывода части вн. хар.
break
end
Z_nagp(m) = 0.8*Z_nagp(m-1);
end
I_2_abs= abs(I_2); U_2_abs = abs(U_2);
plot(I 2 abs, U 2 abs);
```

Результат расчета представлен на рис. 1.12. Значение тока короткого замыкания на внешней характеристике совпал со значением, которое было рассчитано традиционным способом, т.е. через напряжение короткого замыкания. Внешняя характеристика трансформатора является нелинейной кривой.

Следует отметить, что эта особенность внешней характеристики в некоторых случаях не столь очевидна. Например, если рассматривать часть характеристики от нуля до номинального тока (рис. 1.13), то она практически линейна. Данная версия внешней характеристики позволяет более наглядно оценить изменение вторичного напряжения под действием нагрузки. Для её вывода в 10 строке программы необходимо переменную **m** сравнивать не с числом 70, а с 24, где **m** – количество выводимых точек.

Рис. 1.12

Рис. 1.13

В данном случае оператор прерывания **break** позволяет досрочно выйти из цикла по завершении 9 итераций.

Следует отметить, что оператор **break** не работает вне циклов **for** и **while**. В этом случае необходимо использовать оператор **return**, который обеспечивает возврат в вызывающую функцию.

Оператор **continue** передает управление в следующую итерацию цикла, пропуская операторы, которые записаны за ним, причем во вложенном цикле он передает управление на следующую итерацию основного цикла.

Для создания пауз в вычислениях или выводе на экран используется оператор **pause**.

При создании процедуры ветвления, часто прибегают к конструкции с переключателями типа **switch.** Такая конструкция позволяет решить задачу примера 1.2 более изящно.

```
Пример 1.4.
% example 1 4. Программа для определения цвета шины по её
% обозначению. Вызывает функцию faza (файл: faza.m).
for m = 1:10 % Организация цикла
    faza
end
% Функция для программы example 1 4. Определяет цвет шины по
её обозначению.
function faza
% input - оператор ввода, 's'- для ввода строки символов,
faza = input(' Введите название шины (A; B; C; N): ','s');
    switch faza
       case ('A')
          disp('Шина фазы "А" обозначается желтым цветом.');
       case ('B')
          disp('Шина фазы "В" обозначается зеленым цветом.')
       case ('C')
          disp('Шина фазы "С" обозначается красным цветом.')
       case ('N')
          disp('Нулевой рабочий (нейтральный) проводник "N"
 обозначается голубым цветом. ') % Указать одной строкой.
       otherwise
          disp('Уточнить раскладку клавиатуры, регистр или
 букву.') % В т-файле текст между '...' указать одной строкой.
          disp('Для выхода из цикла необходимо нажать
                "Ctrl + C".')
    end
end
```

В принципе, имеется возможность обращаться не к главной программе *example_1_4*, которая служит только для создания цикла, а непосредственно к функции **faza**. Однако, в этом случае придется каждый раз её запускать для получения ответа (рис. 1.14).

Рис. 1.14

1.1.8. Решение системы дифференциальных уравнений электротехнических устройств

1.1.8.1. Трансформатор

MATLAB позволяет рассчитать динамические режимы работы электротехнического устройства путем решения его системы дифференциальных уравнений.

Пример 1.5.

Рассчитать переходной процесс при трехфазном коротком замыкании трансформатора ТМ-1000/10 без учета намагничивающей ветви (Параметры из примера 1.3). Мгновенное значение напряжения изменяется по закону: $u_{2_XX} = \sqrt{2} \cdot U_{2\phi a_3_XX} \sin(2\pi f_1 t)$, здесь $U_{2\phi a_3_XX}$ – действующее значение фазного напряжения вторичной обмотки в режиме холостого хода, f_1 – частота напряжения.

Решение.

Дифференциальное уравнение напряжения одной фазы трансформатора имеет следующий вид [4]:

$$u_{2_{-XX}} = r_k i_k + L_k \frac{di_k}{dt}.$$
 (1.1)

Представим (1.1) в виде:

$$\frac{di_k}{dt} = \frac{\sqrt{2} \cdot U_{2\phi a_3} x_x \sin(\omega t + \alpha_0) - r_k i_k}{L_k}.$$
(1.2)

```
% example 1 5. Программа расчета переходного процесса
% при трехфазном коротком замыкании трансформатора.
% Вызывает функцию funa(файл:funa.m) с правыми частями системы
%дифференциальных уравнений.
U 2faz XX = 230.9; f 1=50; r k = 0.00192; L k = 2.734e-5;;
w=2*pi*f 1 % Угловая частота сети.
Fi k = atan(L k*w/r k) % Угол в треугольнике короткого
замыкания
% Начальная фаза напряжения, при которой:
% alfa 0 = Fi k;
                  % 1) апериодический ток отсутствует;
 alfa \overline{0} = Fi k + pi/2 % 2) апериодический и ударный токи
максимальны.
tspan = [0:0.0005: 0.1]; % Время начала, шаг вывода данных,
время завершения.
                          % Начальные значения переменных.
y 0 = [0];
options =[];
                          % Опции решателя - по умолчанию.
[T,Y]=ode45(@funa, tspan, y 0, options, U 2faz XX, w, r k,
L k, alfa 0) ;
u = sqrt(2) *U 2 faz XX*sin(w*T + alfa 0);
```

plotyy(T,Y,T,u) % Построение графиков по двум осями, т.е. Y=f(T) и u=f(T). grid on % Сетка. % Функция правых частей СДУ funa (файл: funa.m) для программы example_1_5. function dydt= funa(t, y, U_2faz_XX, w, r_k,L_k, alfa_0)% Объявление матрицы dydt dydt=zeros(1,1); % Инициализация заданной матрицы dydt(1) = (sqrt(2)*U_2faz_XX*sin(w*t + alfa_0) r_k*y(1))/L_k; % Уравнение (1.2) end

Результаты расчета тока короткого замыкания при благоприятной фазе напряжения ($\alpha_0 = \varphi_{\kappa} = arctg(\omega L_{\kappa}/r_{\kappa}) = 1.3509$) представлены на рис. 1.5, при неблагоприятной ($\alpha_0 = \varphi_{\kappa} + \pi/2 = 1.3509 + \pi/2 = 2.9217$) – на рис. 1.6. В последнем случае, при $t = \pi/\omega = 0,01c$, ударный ток достигает максимального значения.

Следует отметить, что при появлении ломаной линии вместо синусоидальной кривой, необходимо уменьшить шаг вывода данных в tspan.

рис. 1.15

Рис. 1.16.

1.1.8.2. Двигатель постоянного тока

Наиболее простым электромеханическим преобразователем, с точки зрения математического описания, является коллекторный двигатель постоянного тока (ДПТ) с независимым или параллельным возбуждением. Такой двигатель описывается следующей системой дифференциальных уравнений [5]:

$$u = k\Phi\omega + ir + L\frac{di}{dt};$$

$$M = M_{c} + J\frac{d\omega}{dt},$$
(1.3)

где *r*, *L* – соответственно активное сопротивление и индуктивность якорной цепи; *k* – конструктивный коэффициент; Φ – магнитный поток двигателя; *J* – момент инерции двигателя и нагрузки. В свою очередь электромагнитный момент и ЭДС двигателя при постоянном потоке соответственно равны: $M = k\Phi i = ci$; $e_{A} = k\Phi \omega = c\omega$, здесь: *i* – ток якоря, $c = k\Phi$; ω – угловая скорость якоря (ротора) ДПТ.

Представим систему (1.3) в следующем виде:

$$\frac{di}{dt} = \frac{u - c\omega - ir}{L}; \\
\frac{d\omega}{dt} = \frac{ci - M_C}{J}.$$
(1.4)

Система дифференциальных уравнений позволяет исследовать динамические характеристики ДПТ. Рассмотрим следующий пример.

Пример 1.6.

Предположим, что технические данные ДПТ и его параметры в номинальном режиме имеют следующие значения: $P_H = 2\kappa Bm$ – мощность; $u_H = 110B$ – напряжение; $n_H = 3000 o \delta / MuH$ – частота вращения; $\eta_H = 0,785$ – КПД; r = 0,336 Om – сопротивление цепи якоря двигателя; L = 6,6 m FH – индуктивность якоря двигателя; $r_B = 265 Om$ – активное сопротивление обмотки возбуждения; $J_{,\mu} = 0,011 \kappa c \cdot m^2$ – момент инерции якоря двигателя; $k_J = 1,25$ – коэффициент увеличения момента инерции за счет нагрузки, т.е. $J = k_J J_{,\mu} = 0,01375 \kappa c \cdot m^2$.

Рассчитать динамические режимы ДПТ при пуске и набросе номинальной нагрузки. Построить зависимости $\omega = f(t)$ и i = f(t).

Решение.

Рассчитаем коэффициент, который входит в систему уравнений (1.4):

$$c = k\Phi = \frac{u_H - i_H r}{\omega_H} = \frac{110 - 23,16 \cdot 0,336}{314,157} = 0,325B \cdot c, \qquad (1.5)$$

где: $i_H = P_H / (u_H \eta_H) = 2000 / (110 \cdot 0.785) = 23,16 A$ – номинальный ток; $\omega_H = (2\pi n_H) / 60 = (2\pi 3000) / 60 = 314,159 \, pad / c$ – номинальная угловая скорость вращения двигателя.

Момент нагрузки примем равным номинальному моменту двигателя: $M_C = M = c \cdot i_H = 0,325 \cdot 23,16 = 7,527 H \cdot M$.

На основе (1.4) разработана программа расчета (т-файл), текст которой представлен ниже.

```
% example_1_6. Программа расчета (m-файл)переходного процесса
% ДПТ независимого (параллельного) возбуждения
% Вызывает функцию fun_DPT (файл: fun_DPT.m) с правыми частями
% системы дифференциальных уравнений.
u=110; r=0.336; L=6.6e-3; J=0.01375; M_c_nabp=7.527; c=0.325;
t_nabp = 0.5; % Время наброса номинальной нагрузки.
tspan = [0:0.0005: 0.8]; % Время начала, шаг вывода данных,
% время завершения.
y_0 = [0; 0]; % Начальные значения переменных.
```

```
options =[];
                  % Опции решателя - по умолчанию.
[T,Y]=ode45(@fun DPT, tspan, y 0, options, u, r, L, J,
M c nabp, c, t nabp) ;
plot(T,Y(:,1),T,Y(:,2)) % Построение графиков по двум осям,
                        % т.е. i=f(T) и w=f(T).
grid on % Сетка.
8 Функция правых частей СДУ fun DPT (файл: fun DPT.m) для
% программы example 1 6.
function dydt= fun DPT(t, y, u, R, L, J, M c nabp, c, t nabp)
% Объявление матрицы dydt
dydt=zeros(2,1); % Инициализация заданной матрицы
if t<t nabp
                 % Наброс нагрузки при t=t nabp
    M c=0;
else
    M_c=M_c_nabp;
end
dydt(1) = (u - c*y(2) - R*y(1))/L; % CJY (1.4)
dydt(2) = (c*y(1) - M_c)/J;
end
```

Результаты моделирования прямого пуска ДПТ с последующим набросом номинальной нагрузки представлены на рис. 1.17. Ось тока – слева, ось частоты вращения – справа.

Следует отметить, что данная программа так же позволяет исследовать влияние параметров ДПТ, напряжения и величины статического момента нагрузки на динамические режимы.

Рис. 1.17

Кривые, представленные на рис. 1.17, позволяют сделать очевидные выводы: при прямом пуске ДПТ на начальном этапе возникает пусковой ток, который в 9,3 раза больше номинального; на заключительном этапе разгона двигатель переходит в режим рекуперации; после разгона – работает в режиме идеального холостого хода (ток равен нулю); наброс номинальной нагрузки приводит к снижению частоты вращения ротора и увеличению тока, при этом в установившемся режиме они принимают номинальные значения.

1.1.8.3. Асинхронный двигатель с короткозамкнутым ротором

Поскольку основным потребителем электроэнергии на промышленных предприятиях остаются асинхронные машины, то исследование их динамических режимов представляет определенный интерес.

При реализации программы расчета воспользуемся известной системой дифференциальных уравнений асинхронной машины [5]:

$$u_{1\alpha} = r_{1}i_{1\alpha} + \frac{d\Psi_{1\alpha}}{dt}; \quad u_{1\beta} = r_{1}i_{1\beta} + \frac{d\Psi_{1\beta}}{dt}; \\ 0 = r_{2}i_{2\alpha} + \frac{d\Psi_{2\alpha}}{dt} + \omega_{p}\Psi_{2\beta}; \quad 0 = r_{2}i_{2\beta} + \frac{d\Psi_{2\beta}}{dt} - \omega_{p}\Psi_{2\alpha}; \\ \frac{di_{\alpha}}{dt} = \frac{u_{1\alpha} - ri_{\alpha}}{L}; \quad \frac{di_{\beta}}{dt} = \frac{u_{1\beta} - ri_{\beta}}{L}; \\ M = \frac{mpM}{2(L_{1}L_{2} - M^{2})} (\Psi_{1\beta}\Psi_{2\alpha} - \Psi_{1\alpha}\Psi_{2\beta}); \\ \frac{d\omega_{p}}{dt} = \frac{p}{J} (M - M_{c}), \end{cases}$$
(1.5)

где $u_{1\alpha} = U_m \cos(\omega t)$, $u_{1\beta} = U_m \sin(\omega t)$ – напряжения на обмотке статора по осям α , β ; $i_{1\alpha}$, $i_{1\beta}$ – токи статора; $i_{2\alpha}$, $i_{2\beta}$ – токи ротора; i_{α} , i_{β} – токи сети; $i_{c\alpha}$, $i_{c\beta}$ – токи конденсаторов; $\Psi_{1\alpha}$, $\Psi_{1\beta}$, $\Psi_{2\alpha}$, $\Psi_{2\beta}$ – потокосцепления статора и ротора; r_1 , r_2 – активные сопротивления статора, ротора и сети; ω , ω_p – частота сети и частота вращения ротора (эл. рад/с); L_1 , L_2 – полные индуктивности обмоток статора и ротора; L_m – взаимная индуктивность между обмотками; M, M_C – электромагнитный момент АД и статический момент нагрузки; m – число фаз; p – число пар полюсов; J – момент инерции двигателя и механизма.

Потокосцепления обмоток в (1.5):

$$\Psi_{1\alpha} = L_{1}i_{1\alpha} + Mi_{2\alpha}; \Psi_{1\beta} = L_{1}i_{1\beta} + Mi_{2\beta};
\Psi_{2\alpha} = L_{2}i_{2\alpha} + Mi_{1\alpha}; \Psi_{2\beta} = L_{2}i_{2\beta} + Mi_{1\beta}.$$
(1.6)

Пример 1.7.

В качестве примера, рассчитаем динамический режим пуска АД, который имеет следующие параметры: $P_2 = 110 \kappa Bm$; $U_{\mu} = 220B$; $r_1 = 0,02155Om$; $r_2 = 0,01231Om$; $L_1 = L_2 = 0,010646\Gamma \mu$; $M = 0,01038\Gamma \mu$; $J_{\partial e} = 2,3\kappa\Gamma m^2$; p = 2 [5]. Параметры обмотки ротора приведены к обмотке статора.

Решение.

Для расчета динамических режимов АД воспользуемся следующей программой (m-файлом):

```
% example 1 7. Программа расчета (m-файл)динамических режимов
% работы АД с короткозамкнутым ротором
8 Вызывает функцию fun AD (файл: fun AD.m) с правыми частями
% системы дифференциальных уравнений и параметрами АД.
global Ur1L1r2L2MpJw1Mc nabp t nabp;
              % Действующее значение напряжения на статоре.
U=220;
r 1=0.02155; % Активное сопротивление статора.
L 1=0.010606; % Полная индуктивность обм. статора.
r 2=0.01231; % Активное сопротивление ротора.
L_2=L_1; % Полная индуктивность обм. ротора
M=0.01038; % Взаимная индуктивность.
              % Число пар полюсов.
p=2;
J=2.3;
             % Момент инерции.
f 1 = 50;
              % Частота сети.
w 1 = 2*3.14159*f 1; % Угловая частота сети.
M с nabp =706.4; % Статический момент нагрузки, равный
                 <sup>8</sup>номинальному моменту АД.
t nabp = 1;
                 8 Время наброса статического момента
tspan = 0:0.0005: 1.4; % Время начала расчета. Шаг вывода.
                          % Время завершения.
y 0 = [0; 0; 0; 0; 0]; % Начальные значения переменных.
[T,Y]=ode45(@fun AD, tspan, y 0);
Y out =[];
Y_{out}(:,1) = (Y(:,1).*L_2 - Y(:,3).*M) / (L_1*L_2 - M*M); % TOK
статора по оси альфа
Y_out(:,2) = (Y(:,2).*L_2 - Y(:,4).*M) / (L 1*L 2 - M*M);
                                                        <sup>8</sup> ток
статора по оси бета
Y_{out}(:,3) = (Y(:,3).*L_1 - Y(:,1).*M) / (L_1*L_2 - M*M);
                                                        <sup>8</sup> ток
ротора по оси альфа
Y_out(:,4) = (Y(:,4).*L 1 - Y(:,2).*M) / (L 1*L 2 - M*M);
                                                        8 TOK
ротора по оси бета
Y out(:,5) = Y(:,5)/p ; % Угловая скорость ротора.
Y out(:,6) =1.5*p*M*(Y(:,1).*Y(:,4)-Y(:,2).*Y(:,3))/(L 1*L 2-
М*М); % Электромагнитный момент АД.
```

```
% Построение графиков скорости ротора и электромагнитного
% момента АД.
plotyy(T,Y out(:,5),T,Y out(:,6))
grid on % Сетка.
% Функция правых частей СДУ fun AD (файл: fun AD.m) для
программы example 1 7.
% Объявление матрицы dydt
function dydt= fun AD(t, y)
global Ur1L1r2L2MpJw1Mcnabpt nabp;
dydt=zeros(5,1); % Инициализация заданной матрицы
if t<t nabp
                  % Наброс нагрузки при t=t nabp
   M c=0;
else
   M c=M_c_nabp;
end
 dydt(1) = -((y(1)*L 2 - y(3)*M)/(L 1*L 2 - M*M))*r 1 +
sqrt(2)*U*sin(w 1*t);
 dydt(2) = -((y(2)*L 2 - y(4)*M)/(L 1*L 2 - M*M))*r 1 +
sqrt(2) *U*cos(w 1*t);
 dydt(3) = - ((y(3)*L_1 - y(1)*M)/(L_1*L_2 - M*M))*r_2 +
y(5)*y(4);
 dydt(4) = -((y(4)*L 1 - y(2)*M)/(L 1*L 2 - M*M))*r 2 -
y(5)*y(3);
 dydt(5) = p*(1.5*p*M*(y(1)*y(4) - y(2)*y(3))/(L 1*L 2 - M*M) -
M c)/J;
end
```


Рис. 1. 18

Результаты расчета динамических режимов работы асинхронного двигателя представлены на рис. 1.18. Двигатель разгоняется при отсутствии нагрузки на валу. В момент времени t = 1c на вал АД подается статический момент нагрузки, который в данном случае равен номинальному моменту двигателя, т.е., $M_C = M_{HOM} = (P_{2HOM} 60)/(2\pi n_{HOM}) = 706,4HM$... Как при пуске, так и при набросе нагрузки наблюдается затухающий колебательный процесс. До номинальной частоты вращения данный АД без нагрузки на валу разгоняется чуть меньше, чем за 0,6 сек.

При пуске АД с 45%-ым от номинального значения моментом, время пуска возрастает (рис. 1.19). К аналогичному результату приводит увеличение момента инерции и снижение напряжения.

Следует отметить, что по мере усложнения программы расчета возрастают и проблемы, связанные с её отладкой. Существенно облегчить поиск ошибок позволяет отладчик m-файлов, который гармонично взаимодействует с редактором файлов.

Рассмотрим работу отладчика на примере последней программы. Предположим, что нам необходимо проверить, в какой момент времени происходит операция присваивания м_c=м_c_nabp в функции fun_AD.

Рис. 1.19

Рис. 1. 20

Рис. 1.21

Для этого установим в этой строке точку останова путем щелчка мышью в колонке останова (рис. 1.20). Альтернативные варианты: использовать кнопку на панели инструментов **Breakpoints** \rightarrow **Set/Clear**; использовать клавишу **F12**. Повторный щелчок удаляет точку останова. После этого переходим в окно программы *example_1_7* и запускаем её, нажав на кнопку **Run**, расположенную на панели инструментов. После этого программа достигает точку останова и **MATLAB** переходит в режим отладки (рис. 1.21), при этом символ приглашения >> в командном окне меняется на **K**>>, а рядом с точкой останова появляется зеленая стрелка. Если необходимо определить содержимое переменной, то достаточно подвести к нему стрелку. После этого появляется окно с информацией о переменной, в данном случае это переменная времени *t*.

В режиме отладки имеется возможность пошагового выполнения программы. Для этого достаточно воспользоваться кнопками на панели инструментов или клавишей **F10.** При этом вы можете просматривать содержимое переменных и выражений. Для выхода из режима отладки достаточно нажать красную кнопку **Quit Debugging**.

Описанные выше подходы к программированию и визуализации результатов в настоящее время доступны и в других вычислительных системах. Однако, одним из достоинств, которое позволило МАТLAB занять лидирующее положение в области современного математического научно-технического программного обеспечения. стали И многочисленные расширения для технических вычислений. Эти расширения позволяют создать модель всего устройства в целом, несмотря на различия в их физической природе. Например, если речь идет об автомобиле, то одновременно рассчитать динамические характеристики его взаимосвязанных энергетических, механических, электрических и иных узлов, т.е. смоделировать поведение всего автомобиля при разгоне, торможении, повороте и т.д. Это позволяет на этапе проектирования, а не на этапе создания опытного образца, обнаружить значительную часть ошибок и устранить их. Поскольку стоимость опытного образца не сопоставима со стоимостью его модели, то такая "работа над ошибками" позволяет сэкономить значительные средства при создании нового технического устройства [6].

Что касается электроэнергетики, то использование **MATLAB** и её расширений позволяет: настраивать устройства релейной защиты на модели энергосистемы или её участка, а не на самом объекте; моделировать устойчивость и иные режимы работы энергосистемы с учетом электрической, механической и иных составляющих; получать и обрабатывать информацию с устройств контроля и учета [3].

В следующем разделе рассмотрим основы работы с Simulink – основным расширением MATLAB, которое позволяет осуществить блочное имитационное моделирование различных систем и устройств с применением визуально-ориентированного программирования [2,3,7,8].

1.2. Simulink

1.2.1. Система моделирования Simulink

Основным достоинством расширения **Simulink** является простота и наглядность его использования при моделировании различных устройств и систем, в том числе и электротехнических. В основном это связано с тем, что вы не имеете дел с написанием строк программы, их редактированием и отладкой, как это имеет место в **MATLAB** или любом ином языке высокого уровня. В **Simulink** используется совершенно иной подход – визуально-ориентированный. При таком моделировании используются готовые блоки, которые необходимо с помощью мыши перенести из библиотеки в окно документа **Simulink**, соединить линиями входы и выходы этих блоков. В результате получаем S-модель, т.е. **Simulink** модель, которую запускаем простым нажатием кнопки **Run**.

1.2.2. Состав библиотеки Simulink

Библиотека **Simulink** представляет собой набор различных визуальных блоков. Для доступа к ним необходимо нажать кнопку **Simulink Library** на панели инструментов **MATLAB** (рис. 1.1). При этом появляется окно браузера (обозревателя, навигатора, программы просмотра) библиотеки, представленное на рис. 1.22.

Окно содержит следующие элементы:

- 1) Заголовок, с названием окна Simulink Library Browser.
- 2) Панель инструментов, с ярлыками наиболее часто используемых команд.
- 3) Окно комментария для вывода поясняющего сообщения о выбранном блоке.
- 4) Список разделов библиотеки, реализованный в виде дерева.
- 5) Окно содержимого раздела библиотеки (список вложенных разделов библиотеки или блоков).

Рис. 1.22.

Ниже представлены некоторые разделы и блоки библиотеки Simulink. Полный перечень блоков доступен в Help. Для его получения достаточно два раза щелкнуть по любому блоку и в открытом окне параметров блока нажать кнопку Help.

	Sources – источники сигналов							
1	11 ~	Band-Limited White Noise	Генератор белого шума.					
2	\mathbb{W}	Chirp Signal	Генератор линейно-изменяющейся частоты.					
3		Clock	Источник времени.					
4	1 >	Constant	Источник постоянного сигнала.					
r								
----	--	---	--	--	--			
5	Counter Free- Running	Источник сигнала типа «счетчик».						
6	Counter Limited	Источник типа «счетчик с ограничением».						
7	12:34 Digital Clock Дискретный источник времени.							
8	SIDemo Sign. Positive Constant	Перечислимая константа.						
9	untitled.mat > From File	Блок считывания данных из файла.						
10	simin From Workspace	Блок считывания данных из рабочей области MATLAB.						
11	Ground	Формирователь сигнала нулевого уровня.						
12	1 In1	Входной порт.						
13	Pulse Generator	Источник импульсного сигнала.						
14	Ramp	Источник линейно-изменяющегося воздействия.						
15	Random Number	Источник случайного сигнала с нормальным распределением.						
16	Repeating Sequence	Источник периодического сигнала с интерполяцией.						
17	Repeating Se- quence Inter	Источник периодического сигнала.						
18	Repeating Se- quence Stair	Источник ступенчатого периодического сигнала.						
19	Group 1 Signal 1> Signal Builder	Конструктор сигналов.						
20	Signal Generator	Генератор сигналов.						
21	Sine Wave	Источник синусоидального сигнала.						
22	Step	Генератор ступенчатого сигнала.						
23	Uniform Ran- dom Number	Источник случайного сигнала с равномерным распределением.						

	Sinks – приемники сигналов			
1	Display	Цифровой дисплей.		
2	Floating Scope	«Плавающий» осциллограф.		
3	> 1 Out1	Выходной порт.		
4	> Scope	Осциллограф.		
5	STOP Stop Simulation	Блок остановки моделирования.		
6	> Terminator	Концевой приемник.		
7	>untitled.mat To File	Блок записи в файл.		
8	> simout To Workspace	Блок записи в рабочую область MATLAB.		
9	XY Graph	Графопостроитель.		

	Continuous – блоки непрерывных моделей			
1	>du/dt > Derivative	Блок вычисления производной.		
2	$\rightarrow \frac{1}{s} \rightarrow \text{Integrator}$	Интегратор.		
3	$\xrightarrow{\frac{1}{s}}$ Integrator Limited	Интегратор с ограничением.		
4	$\downarrow u \xrightarrow{1}{s^2} dx $ Integrator, Second-Order	Интегратор второго порядка.		
5	u <u>1</u> ∫ x Integrator, s² ∫dx Second-Ord	Интегратор второго порядка с ограничением.		
6	> PID (s) > PID Controller	ПИД-регулятор (контроллер).		
7	Ref PID(s) (2DOF)	ПИД-регуляторы с двумя степенями свободы (<i>two-degree-of-freedom</i>).		
8	x' = Ax+Bu y = Cx+Du State-Space	Объект пространства состояний.		

9	$\rightarrow \frac{1}{s+1} \rightarrow \text{Transfer Fcn}$	Передаточная функция.
10	>DAY > Transport Delay	Блок фиксированной задержки сигнала.
11	Variable Time To Delay	Блок управляемой задержки времени.
12	Variable Transport D	Блок управляемой задержки сигнала.
13	$\rightarrow \frac{(s-1)}{s(s+1)} \rightarrow $ Zero-Pole	Передаточная функция «нули-полюса».

	Discontinuities – нелинейные блоки				
1	> Backlash	Люфт.			
2	Coulomb & Viscous Fric	Блок сухого и вязкого трения.			
3	>> Dead Zone Зона нечувствительности.				
4	Dead Zone	Управляемая зона нечувствительности.			
5	Hit Crossing	Блок определения момента пересечения порогового значения.			
6	→ Quantizer	Квантователь.			
7	> Rate Limiter	Управляемый блок ограничения сигнала.			
8	Превляемый блок ограничения скоро В в в в в в в в в в в в в в в в в в в в				
9	> Relay	Реле.			
10	> + Saturation	Ограничитель.			
11	Saturation Saturation Dynamic	Управляемый ограничитель.			
12	→ 🔀 → Wrap To Zero	Блок, выполняющий сброс сигнала до нулевого уровня.			

	Math Operations – блоки математических операций			
1	> IuI > Abs	Блок вычисления модуля.		
2	>+ >+ + > Add	Сумматор (пиктограмма в виде прямоугольника).		
3	Solve f(z) f(z) = 0 z Algebraic Constraint	Блок алгебраического контура.		
4	> ^{Y0} A y Assignment	Блок присвоения элементам массива новых значений.		
5	> u+0.0 > Bias	Смещение.		
6	→ └ui Complex to ∠u Magnitude	Блок вычисления модуля и (или) аргумента комплексного числа.		
7	Re> Complex to	Блок вычисления действительной и (или) мнимой части комплексного числа.		
8)× ÷ Divide	Блок деления.		
9	> Dot Product	Блок скалярного умножения векторов.		
10	Find Find Nonzero	Блок поиска ненулевых элементов.		
11	>1 Gain	Усилитель.		
12	Angle to Co	Блок расчета комплексного числа по его модулю и аргументу.		
13	> e ^u > Math Function	Математическая функция.		
14	Matrix Concatenate	Блок объединения сигналов в матрицу.		
15	>min > MinMax	Блок вычисления максимального или минимального значения с возможностью сброса.		
16	>u min(u,y) y R min(u,y) y MinMax Run- ning Resett	Блок вычисления максимального или минимального значения.		
17	Permute P:[2,1] Permute	Блок транспонирования.		
18	> P(u) O(P) = 5 Polynomial	Степенной многочлен.		

19	> > Product	Умножитель.				
20	> Product of Elements	roduct of Блок вычисления произведения элементов вектора.				
21	Real-Imag to	Блок расчета комплексного числа по его действительной и мнимой части.				
22	>1/√u Reciprocal Sqrt	Блок вычисления единицы деленной на квадратный корень.				
23	> U(:) > Reshape	Преобразователь размерности сигнала.				
24	> floor > Rounding Function	Блок округления числа.				
25	>> Sign	Блок определения знака числа. При 0 на входе 0 на выходе.				
26	>±√lul > Signed Sqrt	Квадратный корень со знаком. Например, при $u = -2$ на выходе получим "- 1.4142".				
27	>t Sine Wave Function	Синусоидальная функция.				
28	> 1 > Slider Gain	Ползунковый регулятор.				
29	> Vu > Sqrt	Квадратный корень				
30	>Squeeze> Squeeze	Блок сжатия.				
31	Subtract	Блок вычисления разности.				
32	>++ Sum	Сумматор (круглая пиктограмма).				
33	Sum of Elements	Блок вычисления суммы элементов вектора.				
34	> sin > Trigonometric Function	Тригонометрическая функция.				
35	-u > Unary Minus	Унарный минус.				
36	Vector Concatenate	Блок объединения векторов.				
37	>u+Ts> Weighted Sample Tim	Блок поддержки вычислений, использующих шаг дискретизации.				

τ	User-Defined Functions – функции, задаваемые пользователем				
1	> f(u) > Fcn	Блок задания функции.			
2	Interpreted MATLAB Fcn MATLAB Fu	Блок ввода функций или выражений MATLAB.			
3	>matlabfile AMATLAB S	Блок задания S-функции второго уровня.			
4	> MATLAB Function	Блок создания MATLAB-функции для использования в Simulink.			
5	, MATLAB _{System} System	Блок для использования системных объектов.			
6	> system > S-Function	S-функция.			
7	S-Function ^{sydem} Builder	Конструктор S-функции на языке C.			
8	S-Function Examples Examples	Примеры S-функции.			

	Порты и подсистемы Ports &Subsystems			
1	Atomic Subsystem	Неделимая подсистемы.		
2) CodeReuseS- ubsystem	Подсистема, имеющая общий код для всех ее экземпляров в модели.		
3	Master Configurable Subsystem	Блок конфигурации подсистем.		
4	Enable	Создание порта для управления подсистемой.		
5	, ^π Enabled Subsystem	Блок создания управляемой подсистемы, т.е. Е-подсистемы.		
6	Enabled and Triggered S	Управляемая уровнем и фронтом сигнала подсистема, т.е. ЕТ-подсистема.		
7	For Each	Позволяет многократно выполнять алгоритм на каждом элементе или подмассиве.		
8	For Iterator Subsystem	Блок создания подсистемы, выполняющей итерационные действия под управлением цикла типа for.		

9	<pre> Function-Call Feedback L</pre>	Прерывает обратную связь между блоками.		
10	f() Function-Call Generator	Внешний блок управления подсистемой с запросом функции.		
11	> f Function-Call Split	Обеспечивает разветвление сигнала.		
12	Function-Call Subsystem	Блок создания подсистемы с запросом функции.		
13	×u1 (IT(u1 > 0) else ↓	Блок условного оператора.		
14	>If Action Subsystem	Управляемая условием подсистема.		
15	1 In1	Входной порт.		
16	Model Model	Блок, обеспечивающий подключение файла к текущей модели.		
17	Model Variants	Позволяет одну модель использовать как блок в другой модели.		
18	> 1 Out1	Выходной порт.		
19	>in1 out1> Subsystem	Блок позволяет создать подсистему.		
20	Subsystem Examples Examples	Примеры подсистем.		
21	vut case [1]: default:	Переключаемая подсистема.		
22	Switch Case	Переключаемая активная подсистема.		
23	Trigger	Создание триггерного (пускового) порта для запуска подсистемы.		
24	Triggered Subsystem	Блок подсистемы с триггерной системой управления.		
25	Variant Subsystem	Представляет собой подсистему с несколькими подсистемами.		
26	While Iterator	Блок создания подсистемы, выполняющей итерационные действия под управлением цикла типа While.		

1.2.2. Создание, редактирование и запуск Simulink модели

Для создания Simulink модели нажимаем кнопку New model панели инструментов окна браузера (программы просмотра) библиотеки Simulink Library (рис. 1.22). К аналогичному результату приводят действия с вкладки основного окна MATLAB: HOME \rightarrow New \rightarrow Simulink Model. При этом создается пустое окно с названием файла untitled (рис. 1.23).

Сохраняем эту модель в новой папке, например, *example_1_8*, под другим названием, например, *example_1_8*, с расширением *.slx или *.mdl. Для этого последовательно нажимаем на панели инструментов File \rightarrow Save As... и т.д. Следует отметить, что использование кириллицы в названии файла, папки или во всём пути к файлу может стать причиной появления ошибки при сохранении модели в файле с расширением *.mdl (*He cosnadaюm кодовые страницы операционной системы и MATLAB*).

*	xample_1_8 *
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>D</u> isplay Diagram <u>S</u> imulation <u>A</u> nalysis <u>C</u> ode <u>T</u> ools <u>H</u> elp
▶	- ☐ <
exa	mple_1_8
۲	▶a example_1_8
Q	
K 7 K 9	
⇒	
AE	
Rea	y 100% ode45

Рис. 1.23

Изучение возможностей **Simulink** начнем с простого примера. *Пример 1.8.*

Предположим, что необходимо вывести на осциллограф синусоиду с действующим напряжением 230,9 *В* и частотой 50 *Гц* из *Примера* 1.5.

Для этого вызываем Simulink Library Browser путем нажатия в панели инструментов на кнопку **C** Library Browser (рис. 1.23). Для удобства окно библиотеки Simulink Library Browser располагаем слева от окна модели таким образом, чтобы они не перекрывали друг друга. В принципе, окно библиотеки можно закрепить поверх остальных открытых окон, нажав на кнопку **Stay on top** (Оставаться на переднем плане). В библиотеке Simulink переходим в раздел Sources (источники

сигналов), в котором наводим курсор на блок синусоидального сигнала **Sine Wave**. Затем нажимаем правую кнопку мыши, перетаскиваем этот блок к левому краю окна модели и отпускаем кнопку. Аналогично поступаем с блоком осциллографа **Scope** из раздела **Sinks** (приемники сигналов), но располагаем справа от первого блока. Теперь можно приступить к соединению выхода источника с входом приемника. Для этого подводим курсор к маленькому треугольнику " ▷ " на правой стороне блока **Sine Wave**. После того, как курсор попадёт в область этого треугольника его вид изменится на +. Нажимаем на левую кнопку мыши и перетаскиваем красную пунктирную линию к входу блока **Sine Wave**, который изображен в виде ">". После изменения цвета и характера линии отпускаем левую кнопку. Соединение установлено (рис. 1.24).

Аналогичный результат можно получить, если удерживая клавишу **Ctrl**, вначале выделить первый блок, а после – второй. Для устранения линии связи достаточно её выделить и нажать Delete.

Следует отметить, что для удобного размещения блоков модели в окне **Simulink** можно воспользоваться кнопкой 🖾 на боковой панели инструментов или роликом мыши.

Далее два раза щелкаем левой кнопкой мыши по блоку Sine Wave. В раскрывшемся окне Source Block Parameters: Sine Ware задаем параметры синусоиды: $U_m = \sqrt{2}U = \sqrt{2} \cdot 220$; $\omega = 2\pi f = 2\pi 50$, и нажимаем на кнопку OK (рис. 1.25).

В маленьком окошке, расположенном в панели инструментов, изменяем время окончания расчета 10 *с* на 0,04 *с*.

Изменим ещё одну позицию, которая задана по умолчанию, – это максимальный шаг решателя. Для этого на панели инструментов нажимаем на кнопку 🧔 .

🍡 examp	ole_1_8 *					×
<u>F</u> ile <u>E</u> di	it <u>V</u> iew <u>D</u> ispla	ay Diag <u>r</u> am <u>S</u> imu	ulation <u>A</u> nalysis	Code Tools	<u>H</u> elp	
🔁 - E		[₽] ∎ @ • ⊞ •	4 ⊘ 🕨 🗉	• • 0.04	» 🕢 🔻 🧯	∷ -
example_	_1_8	·				
🕒 🖻 ex	ample_1_8					•
		$\left \wedge \right $	\			
⇒ 		Sine Wave	Scor	 pe		
Ready			206	%	ode	45

Рис. 1.24

Source Block Parameters: Sine Wave	X
Sine Wave	-
Output a sine wave:	
O(t) = Amp*Sin(Freq*t+Phase) + Bias	
Sine type determines the computational technique used. The parameter in the two types are related through:	ers
Samples per period = 2*pi / (Frequency * Sample time)	
Number of offset samples = Phase $*$ Samples per period / (2*pi)	
Use the sample-based sine type if numerical problems due to running large times (e.g. overflow in absolute time) occur.	or =
Parameters	
Sine type: Time based	-
Time (t): Use simulation time	-
Amplitude:	
sqrt(2)*230.9	
Bias:	
0	
Frequency (rad/sec):	
2*pi*50	
Phase (rad):	
0	
Sample time	Ŧ
QK Cancel Help	pply

Рис. 1.25

В открывшемся окне Model Configuration Parameters находим окошко Max step size и вводим значение 0,0005 (рис. 1.26). Такое изменение позволить получить синусоидальную кривую вместо ломаной линии, поскольку возрастет количество точек, выводимых за один период.

Нажимаем кнопку 🕑 **Run**, расположенную на панели инструментов, и запускаем расчет. Результаты расчета в виде окна, представленного на рис. 1.27, раскрываем двойным щелчком мыши по блоку **Scope.** Если кривые выходят за границы осциллографа, то следует нажать кнопку 🖾 **Autoscale** в панели инструментов.

Configuration Parameters: example_1_8/Configuration (Active)		
Select:	Simulation time	^
Solver	Start time: 0.0	=
Data Import/Export Optimization Diagnostics	Solver options	-
Hardware Implementation	Type:	Variable-step
Model Referencing Simulation Target 	Max step size:	0.0005
 Code Generation 	Min step size:	auto
Report Comments	Initial step size:	auto
Symbols	Number of conse	ecutive min steps:
<u>О</u> К	<u>C</u> ancel	<u>H</u> elp <u>A</u> pply

Рис. 1.26

Рис. 1.27

В данном случае в окне осциллографа изображена черная кривая на светлом фоне, а не наоборот, как установлено по умолчанию. Для изменения стиля осциллографа необходимо нажать в панели инструментов кнопку **Parameters**, затем перейти во вкладку **Style** и далее действовать по вкусу. Единственный минус – нет доступа к шрифтам, к названиям осей. Однако следует отметить, что в старых версиях **Simulink** такая "роскошь" в **Scope** вообще отсутствовала. В любом случае, как и прежде, имеется возможность сохранять данные в файлах. Подробности – в соседней вкладке **History** \rightarrow **Save data to workspace**.

Для того, чтобы оценить достоинства расширения Simulink по сравнению с MATLAB, решим задачу Примера 1.5 с помощью его блоков.

Пример 1.9.

Поскольку этот продукт изначально был предназначен для анализа систем автоматического управления, то представим дифференциальное уравнение трансформатора (1.1) в виде передаточной функции. В этой функции в качестве входного сигнала выступит напряжение, а в качестве выходного – ток короткого замыкания:

$$W_{Tp} = \frac{I_k(p)}{U_1(p)} = \frac{1}{r_k + L_k p}$$
(1.7)

или, как принято в Simulink,

$$W_{T_p} = \frac{1}{L_k s + r_k} = \frac{1}{(2.734e - 5)s + 0.00192}.$$
 (1.8)

При создании модели за основу возьмем предыдущий пример *example_1_8*, сохранив его под названием *example_1_9.slx* в новой папке *example_1_9*. Это позволит использовать в новой программе два блока из программы *example_1_8* с уже внесенными в них параметрами.

Для решения (1.8) воспользуемся блоком передаточной функции **Transfer Fcn** из раздела **Continuous**, в которую внесем данные из (1.8). Установим время окончания расчета равным 0,1 *с*.

В окне параметров Source Block Parameters: Sine Ware блока Sine Ware внесем фазу $\alpha = \psi_{\kappa} + \pi/2 = \arctan(\omega L_k/r_k) = 1.5362 + \pi/2$, при которой наблюдается максимальное значение апериодической составляющей тока короткого замыкания.

Окончательный вид Simulink модели для исследования короткого замыкания в трехфазном трансформаторе представлен на рис. 1.28, а результаты расчета – на рис. 1.29. Эти результаты полностью совпали с теми, которые были получены с помощью программы *example_1_5* (рис. 1.16), разработанной в системе MATLAB.

Рис. 1.28

Рис. 1.29

Таким образом, для создания модели расчета тока короткого замыкания трехфазного трансформатора с помощью **Simulink** потребовались три блока, соединенных между собой, в два из которых следует внести исходные данные. Всё просто и наглядно. Нет никаких функций, строк кода и иных дополнительных действий, как при разработке m-файла в системе **MATLAB**.

Следует подчеркнуть, что **Simulink** предоставляет и другие способы решения системы дифференциальных уравнений, например, путем составления структурной схемы математической модели.

Воспользуемся таким подходом при моделировании ДПТ независимого (параллельного) возбуждения.

Пример 1.10.

Заменим $d/dt \leftrightarrow s$ (в отечественной литературе $-d/dt \leftrightarrow p$) и перепишем (1.3) в следующем виде:

$$i = (u - c\omega) \left(\frac{1}{Ls + R} \right);$$

$$\omega = (ci - M_c) \left(\frac{1}{Js + 0} \right).$$
(1.9)

Модель для решения системы (1.9)набирается путем перетаскивания блоков из соответствующих библиотек в окно модели (рис. 1.30). Выбираем раздел Continuous, выделяем блок Transfer Fcn, нажимаем левую кнопку мыши и перетаскиваем блок в окно модели. Поскольку в модели используются два таких блока, то операцию можно повторить или скопировать этот блок в окне модели, используя способы, которые применяются при копировании файлов в ОС Windows. Из библиотеки Math Operations потребуются блоки Gain (2 шт.) и Sum (2 шт.), а из библиотек Sinks и Sources соответственно блоки Scope (2 шт.), Step (2 шт.), блок Display, а также из раздела Signal Routing блок Mux.

Для решения первого уравнения системы (1.9) значение напряжения *u* заносим в **Step**, который соединяем с сумматором **Sum**, в котором осуществляется операция $(u - c\omega)$. Блок **Sum** соединяем с блоком **Transfer Fcn**, осуществляющим операцию 1/(Ls + R). Для изменения знака сигнала в сумматоре **Sum** необходимо два раза щелкнуть левой кнопкой мышки на **Sum**. В открывшемся окне в строчке **List of signs** изменить последний «+» на «–» и закрыть окно.

Рис. 1.30

Аналогичные изменения следует внести и в блок Sum 1.

Для решения второго уравнения системы (1.9) ток *i* на выходе блока **Transfer Fcn** умножаем на c (с помощью блока Gain) и подаем на сумматор Sum 1. Изменение позиции входа M_c осуществляем путем введения в поле List of signs следующих символов -+. Так же для осуществления операции ($ci - M_c$) на Sum 1 подаем момент нагрузки M_{c} (возмущение), значение которого задаем в блоке Step 1. Блок Sum 1 соединяем с блоком Transfer Fcn 1, который реализует операцию 1/(Js+0). На выходе этого блока получаем угловую скорость ротора ω , значение которой подаем на осциллограф Scope и на блоке Gain 1. После умножения в этом блоке скорости ω на коэффициент *c* передаем полученный результат в блок Sum. Для изменения направления входа и выхода блока Gain 1 можно нажать Ctrl+I или выделить блок, нажать правую кнопку мышки и перейти Format \rightarrow Flip Block. Для создания узла на линии связи необходимо подвести курсор мышки к этой линии, нажать правую кнопу и соединить новую линию с входом блока, например, с входом блока Gain 1.

Полученная структурная схема (рис. 1.30) полностью соответствует системе уравнений ДПТ (1.9). Однако она не позволяет исследовать характеристики объекта, пока его параметры не внесены в модель. Предположим, что технические данные и параметры ДПТ в номинальном режиме равны параметрам двигателя из *Примера 1.6*. В этом случае вносим эти значения в соответствующие окна параметров (Рис. 1.32).

Рис. 1.31

Source Block Parameters: Step	Source Block Parameters: Step1	
Step	Step	
Output a step.	Output a step.	
Parameters	Parameters	
Step time:	Step time:	
0	0.5	
Initial value:	Initial value:	
0	0	
Final value:	Final value:	
110	7.527	
Sample time:	Sample time:	
0	0	
✓ Interpret vector parameters as 1-D	terpret vector parameters as 1-D	
Enable zero-crossing detection	Enable zero-crossing detection	
<u>QK</u> <u>Cancel Help</u> <u>Apply</u>	OK Cancel Help Apply	

Рис. 1.32

Рис. 1.32

Если эти численные значения не отображаются в блоках (рис. 1.31), то их необходимо увеличить, выделив блок и потянув его за угол, как это обычно делают с рисунками или фотографиями в редакторе.

В поле ввода Simulation stop time панели инструментов (рядом с кнопкой \triangleright Run) вводим время расчета t = 1 (рис. 1.31). Можно воспользоваться и командой меню Simulation \rightarrow Configuration Parameters \rightarrow Stop time. В поле Step time блока Step 1. вводим время наброса нагрузки M_c (возмущения), равное 0,5 *c*.

После этого запускаем модель, нажав кнопку **Nun**. Двойным щелчком левой кнопки мышки на **Scope** (осциллограф) визуализируем результаты расчета (рис. 2.11). Как и следовало ожидать, эти результаты совпали с теми, которые представлены на рис. 1.17. Однако, на рис. 1.32 каждая кривая выведена в отдельной координатной плоскости, в первом – момент, а во втором – ток.

В принципе, количество сигналов, которые могут быть выведены с помощью **Scope**, превосходит разумную необходимость. Для изменения количества сигналов необходимо открыть **Scope**, на панели инструментов **Scope** нажать кнопку **Parameters**, затем перейти во вкладку **General** и ввести необходимое количество осей в окошко **Number of axes** (рис. 1.33).

Scope	
🖨 🥥 🔍 💌 🛓 🔜 🎬 🌇 🔛 🔒 🔸	لا ا
5 Scope' parameters	
General History Style	
0 Axes	
Number of axes: 2	
-5 Time range: auto	
Tick labels: bottom axis only 💌	
Scroll Legends Floating Scope	
Sampling	
0 Decimation 💌 1	
-5 OK Cancel Help	Apply 0.9 1
Time offset: 0	

Рис. 1.33

Рис. 1.34

Для того, чтобы вывести несколько сигналов в одной координатной плоскости, необходимо их смешать с помощью блока **Mux** из раздела **Signal Routing** и подать этот сигнал на вход осциллографа, в нашем случае – **Scope 1**. При этом получим графики, представленные на рис. 1.34. В блоке **Display** (Рис. 1.31) показано значение скорости ротора в установившемся режиме (в конце расчета).

Очень часто, при подготовке отчетов, возникает необходимость переноса полученных графиков в текстовый редактор, например, в Word. В этом случае, если к качеству графиков не предъявляется особых требований, следует выделить график **Scope**, нажать сочетание клавиш **Alt+PrtScn**, перейти в редактор и вставить изображение в документ, нажав **Ctrl+V**.

При более жестких требованиях к качеству графиков информацию следует записать в переменную, затем с неё передать информацию в **Word** или **Excel**, а после строить графики, используя возможности этих программ. Для записи в переменную нажимаем кнопку **Parameters**, переходим во вкладку **History**. Снимаем ограничение **Limit data points to last**, если вместо вывода заключительной части графика предполагается вывод всего графика, т.е. со значения t = 0 (**Start time**) до **Stop time**.

Активизируем Save data to workspace, вводим имя переменной, например, ScopeData_example_1_10, выбираем формат Array (рис. 1.35).

Scope1' pa	rameters		×
General History Style			
Limit data points to last: 5000			
Save data to workspace			
Variable name:	ScopeData_example_1_10		
Format:	Array		•
	OK Cancel	Help	Apply

Рис. 1.35

Рис. 1.36

После этого переходим в **MATLAB**. В окне **Workspace** нажимаем на переменную **ScopeData_example_1_10**. Копируем данные в «карман», нажав **Ctrl+C**. Запускаем **Word**. Во вкладке **BCTABKA** нажимаем **Диаграмма**, выбираем **Точечная** → **Точечная с гладкими кривыми**. Вставляем в её таблицу данные из **MATLAB**, нажав **Ctrl+V**. Далее выполняем стандартные действия по оформлению диаграммы, например, вводим название осей, легенду, подгоняем оси, изменяем шрифты и т.д. В результате получаем диаграмму, гармонично вписывающуюся в стиль редактора **Word** (Рис. 1.36).

1.3. SimPowerSystems

1.3.1. Система моделирования SimPowerSystems

Для моделирования электроэнергетических систем, a также устройств электротехники и промышленной электроники служит пакет расширения SimPowerSystems. В ЭТОМ пакете имеются блоки большинства электротехнических устройств: элементов И ЛЭП, трансформаторов, синхронных асинхронных генераторов, двигателей, полупроводниковых элементов, преобразователей, измерительных приборов и т.д.

Методика построения моделей SimPowerSystems практически не отличается от методики построения Simulink моделей. И в том, и в другом случае используются блоки, которые соединяют между собой. Отличие же заключается в том, что в моделях Simulink это линии передачи сигнала, а в моделях SimPowerSystems линии – некие

виртуальные проводники, по которым протекает виртуальный ток. Для измерения этого тока используется блок измерителя тока, который подключается в разрыв проводника (линии), а сигнал с этого блока поступает на осциллограф, дисплей или иной блок расширения **Simulink**.

Таким образом, эти два блока очень тесно связаны между собой. Особое внимание необходимо уделить изучению обширной библиотеки **SimPowerSystems**.

1.3.2. Создание, редактирование и запуск модели SimPowerSystems

Рассмотрим, как можно решить задачу *Примера 1.5* с помощью блоков **SimPowerSystems**.

Пример 1.11.

Запускаем **MATLAB**, нажимаем на панели инструментов кнопку **Library Browser** , в панели инструментов библиотеки нажимаем на кнопку New model. При этом создается пустое окно с названием файла untitled. Сохраним это окно в новой папке, например, *example_1_11*, под названием *example_1_11*, с расширением файла *.slx или *.mdl. Для этого нажимаем на панели инструментов **File** \rightarrow **Save As...** и т.д. Следует еще раз напомнить, что использование кириллицы в названии файла, папки или во всём пути к файлу может стать причиной появления сообщения об ошибке при сохранении модели в формате *.mdl (*He cosnadaюm кодовые страницы операционной системы и MATLAB*).

После этого переходим к окну библиотеки блоков Library Browser, если оно не перекрыто другими окнами. В противном случае, на панели инструментов окна модели следует нажать кнопку **Library Browser** и закрепить его поверх остальных открытых окон, нажав на кнопку Stay on top.

В списке разделов библиотеки переходим к папке Simscape \rightarrow SimPowerSystems \rightarrow Specialized Technology \rightarrow Electrical Sources (Рис. 1.37).

В этом разделе (папке) выбираем источник переменного напряжения **AC Voltage Source** (Alternate Current – переменный ток) и перетаскиваем его в окно модели. Для измерения тока нам потребуется блок **Current Measurement**, который находится в разделе **Measurements** (Рис. 1.38). Этот блок также перетаскиваем в окно модели.

Рис 1.37

Рис 1.38

Блок измерения тока **Current Measurement** при его включении в цепь **SimPowerSystems** вырабатывает сигнал, который может подаваться на любой приемник расширения **Simulink**. Остановим свой выбор на блоке **Scope** и перенесем его из библиотеки в окно модели.

В данном случае ток короткого замыкания ограничивается только активно-индуктивным сопротивлением короткого замыкания трансформатора. В связи с этим, при создании модели воспользуемся блоком Series RLC Branch (последовательная RLC ветвь), который находится в разделе Elements (Рис. 1.39).

Поскольку блоки SimPowerSystems отличаются ОТ блоков Simulink, то отличаются и способы их подключения. Так, в блоках Simulink выход и вход обозначены треугольником ">" и знаком больше ">"、 т.е. сигнал передается OT выхода входу. В блоках К **SimPowerSystems** условные подключения блоков клеммы ДЛЯ SimPowerSystems обозначены квадратом "□".

Рис 1.39

После того, как все блоки соединены, вводим из Примера 1.5 в соответствующие блоки значения напряжения сети и параметры короткого замыкания трансформатора (Рис. 1.40). Устанавливаем время расчета 0,1 с. Для работы модели необходимо установить ещё один блок, который называется **Powergui block** и находится в разделе **Specialized Technology**. Как и в случае с **Simulink** необходимо установить в решателе максимальный шаг равный 0,0005 с (Рис. 1.26).

В итоге получается модель, показанная на рис. 1.41. Следует отметить, что результаты работы этой модели (Рис. 1.42) совпали с результатами расчета, которые были осуществлены средствами **MATLAB** и **Simulink**, представленными соответственно на рис. 1.16 и рис. 1.29.

Сравнительный анализ всех трех подходов показывает, что наиболее комфортным является моделирование в расширениях Simulink и SimPowerSystems, т.к. в них процесс создания модели сводится к элементарному соединению необходимых блоков, заданию их параметров и настройке решателя. В отличие от Simulink, блоки SimPowerSystems наиболее близки реальным элементам и объектам электротехники, что позволяет говорить о его неоспоримых преимуществах при моделировании электротехнических систем и устройств.

Block Parameters: AC Voltage Source	Block Parameters: Series RLC Branch
AC Voltage Source (mask) (link)	Series RLC Branch (mask) (link)
Ideal sinusoidal AC Voltage source.	Implements a series branch of RLC elements.
Parameters	Use the 'Branch type' parameter to add or remove
Peak amplitude (V):	elements from the branch.
sqrt(2)*230.9	Parameters
Phase (deg):	Branch type: RL
(atan(2*pi*50*2.8e-5/0.0003042)+pi/2)*360/(2*pi)	Resistance (Ohms):
Frequency (Hz):	0.0003042
50	Inductance (H):
Sample time:	2.8e-5
0	Set the initial inductor current
Measurements None	
	Measurements None
OK Cancel Help Apply	QK <u>Cancel Help</u> Apply

Рис. 1.40

Рис. 1.41

Рис. 1.42

Рис. 1.43

При оценке эффективности любого стандартного языка программирования определяющее значение имеет количество доступных функций в его библиотеках. В этом плане эффективность МАТLAB не вызывает сомнений. поскольку расширения системы **MATLAB**+Simulink, которых более 80, имеют в своем составе огромное количество специализированных блоков, позволяющих создать модель всего объекта с учетом взаимодействия его узлов различной физической природы.

Например, автомобиля С расширений В модели помощью SimMechanics. SimDriveline **SimPowerSystems** И учитывается взаимодействие механических и электрических узлов. Далее кратко библиотеку расширения SimPowerSystems рассмотрим блоков Specialized Technology (Рис. 1.43).

1.3.3. Состав библиотек SimPowerSystems Specialized Technology

В состав библиотеки входят следующие разделы (рис. 1.43):

- 1) Application Libraries библиотеки блоков прикладного характера представлены на рис. 1.44 (Глубина раскрытия подпунктов библиотек зависит от актуальности представленных в них блоков):
 - ✓ Electric Drives library библиотека электроприводов [7, 8, 9]:
 ➢ AC drives электроприводы переменного тока:
 - Brushless DC Motor Drive электропривод на базе бесконтактного (бесщеточного) двигателя постоянного тока, выполненного на основе синхронного двигателя с постоянными магнитами;
 - DTC (direct torque and flux control) Induction Motor Drive электропривод, в котором обеспечивается прямое управление моментом и полем асинхронного двигателя;

Рис. 1.44

- Field-Oriented Control Induction Motor Drive электропривод, с поле-ориентированным управлением асинхронного двигателя;
- Five-Phase PM Synchronous Motor Drive электропривод с векторным управлением 5-ти фазного синхронного двигателя с постоянными магнитами;
- PM Synchronous Motor Drive электропривод с векторным управлением синхронного двигателя с постоянными магнитами;
- Self-Controlled Synchronous Motor Drive электропривод с вентильным синхронным двигателем;
- Six-Step VSI (voltage source inverter) Induction Motor Drive электропривод с асинхронным двигателем на основе шестишагового инвертора напряжения;
- Space Vector PWM (*pulse width modulation*) VSI (*voltage source inverter*) Induction Motor Drive электропривод с векторным управлением асинхронного двигателя на основе инвертора напряжения с широтно-импульсной модуляцией.
- **DC drives** электроприводы постоянного тока [7]:
 - Four-Quadrant Chopper DC Drive реверсивный электропривод постоянного тока с широтно-импульсным преобразователем (ШИП);
 - Four-Quadrant Single-Phase Rectifier DC Drive реверсивный электропривод постоянного тока с однофазным выпрямителем;
 - Four-Quadrant Three-Phase Rectifier DC Drive четырех квадрантный (реверсивный) электропривод постоянного тока с трехфазным выпрямителем;
 - **One-Quadrant Chopper DC Drive** одно-квадрантный электропривод постоянного тока с ШИП;
 - **Two-Quadrant Chopper DC Drive** двухквадрантный (нереверсивный) электропривод постоянного тока;
 - **Two-Quadrant Single-Phase Rectifier DC Drive** двухквадрантный (нереверсивный) электропривод постоянного тока с однофазным выпрямителем;
 - **Two-Quadrant Three-Phase Rectifier DC Drive** двухквадрантный (нереверсивный) электропривод постоянного тока с трехфазным выпрямителем.
- **Extra Sources** дополнительные источники:
 - о **Battery** батарея; аккумулятор;
 - о Fuel Cell Stack батарея топливных элементов;
 - Supercapacitor суперконденсатор.

- ➤ Shafts and speed reducers валы и редукторы.
- ✓ Flexible AC Transmission Systems (FACTS) Library гибкие системы передачи переменного тока:
 - HVDC (High-Voltage Direct Current) Systems высоковольтные системы передачи постоянного тока. Для знакомства с моделями HVDC нажимаем клавишу F1, переходим в SimPowerSystems, выбираем Examples и нужную модель. При отсутствии SimPowerSystems после F1 нажимаем на .
 - Power-Electronics Based FACTS гибкие системы передачи переменного тока на базе силовой электроники:
 - Static Synchronous Compensator (Phasor Type) (STATCOM) статический синхронный компенсатор (Векторный тип);
 - Static Synchronous Series Compensator (Phasor Type) (SSSC) – последовательный статический синхронный компенсатор (Векторный тип);
 - Static Var Compensator (Phasor Type): статический компенсатор реактивной мощности (Векторный тип);
 - Unified Power Flow Controller (Phasor Type) объединенный регулятор потока мощности (Векторный тип).
 - ➤ Transformers трансформаторы с системой регулирования под нагрузкой (On-load tape changer – РПН).
- ✓ Renewable Energy Library библиотека возобновляемых источников энергии:
 - Wind Generation ветроэнергетическая установка (ВЭУ).
- 2) Control and Measurements Library библиотека блоков контроля и измерений (Рис. 1.45):
 - > Additional Components дополнительные компоненты;
 - **≻ Filters** фильтры;
 - Logic блоки логики;
 - ▶ Measurements блоки измерений (Рис. 1.46):
 - о **Fourier** блок преобразования Фурье;
 - Fundamental (PLL-Driven) блок определения основной гармоники путем использования фазовой автоподстройки частоты;
 - о **Mean** вычисляет среднее значение сигнала;
 - Mean (Phasor) представляет среднее значение входного сигнала за один цикл основной гармоники в виде комплексного числа (*Phasor – комплексное число, вектор на комплексной плоскости*);

Рис. 1.45

- Mean (Variable Frequency) вычисляет среднее значение сигнала за один период другого сигнала, подаваемого на второй вход блока;
- Positive-Sequence (PLL-Driven) (Phase Locked Loop) вычисляет положительную (прямую) последовательность путем использования системы фазовой автоподстройки частоты;
- Power блок вычисления активной и реактивной мощностей по значениям синусоидальных тока и напряжения за один период;
- Power (3ph, Instantaneous) блок вычисления мгновенных (*Instantaneous*) значений активной и реактивной мощностей трехфазной симметричной синусоидальной системы токов и напряжений;
- Power (3ph, Phasor) блок вычисления активной и реактивной мощностей по трехфазным комплексным значениям тока и напряжения;
- Power (PLL-Driven, Positive-Sequence) блок рассчитывает активную и реактивную мощности положительной (прямой) последовательности токов и напряжений по частоте, определяемой с помощью фазовой автоподстройки;
- Power (Phasor) блок вычисляет активную и реактивную мощности тока и напряжения в виде комплексного числа (сигнала);
- Power (Positive-Sequence) блок рассчитывает активную и реактивную мощности положительной (прямой) последовательности токов и напряжений за период, установленный для этих синусоидальных трехфазных токов и напряжений;
- Power (dq0, Instantaneous) рассчитывает мгновенные значения мощностей в осях dq с учетом нулевой последовательности;
- **RMS** (root mean square) среднеквадратичное (действующее) значение сигнала (например, напряжения или тока);
- Sequence Analyzer блок вычисляет прямую, обратную и нулевую последовательности трехфазного сигнала;
- Sequence Analyzer (Phasor) блок вычисляет прямую, обратную и нулевую последовательности при подаче на вход трех сигналов в виде комплексных чисел;
- о **THD** (*Total Harmonic Distortion*) блок, рассчитывающий коэффициент гармонических искажений.

Рис. 1.46

- ▶ PLL (*Phase Locked Loop*) блоки системы фазовой автоподстройки частоты (ФАПЧ);
- Pulse & Signal Generators блоки генераторов импульсов и сигналов;
- > Transformations блоки преобразователей координат.
- 3) Electrical Sources источники электрической энергии и сигналов (Рис. 1.47):
 - о AC Current Source блок источника переменного тока;
 - о AC Voltage Source блок источника переменного напряжения;
 - о **Battery** блок обобщенной модели батареи;
 - о Controlled Current Source блок управляемого источника тока;
 - Controlled Voltage Source блок управляемого источника напряжения;
 - о DC Voltage Source блок источника постоянного напряжения;
 - Three-Phase Programmable Voltage Source блок трехфазного программируемого источника напряжения;
 - о Three-Phase Source блок трехфазного источника.
- 4) Elements линейные и нелинейные компоненты электротехнических и электронных устройств [2]:
 - **Breaker** выключатель, отключающий цепь при прохождении кривой тока через нулевое значение (рис. 1.48);
 - Connection Port порт соединения;
 - о **Distributed Parameters Line** линия с распределенными параметрами;
 - о **Ground** заземление;
 - о Grounding Transformer заземляющий трансформатор;
 - о Linear Transformer трансформатор без учета насыщения;
 - Multi-Winding Transformer многообмоточный трансформатор;
 - о **Mutual Inductance** взаимная индуктивность;
 - Neutral блок служит для создания общих узлов между блоками;
 - о Parallel RLC Branch однофазная параллельная RLC цепь;
 - о Parallel RLC Load параллельная RLC нагрузка;
 - **Pi Section Line** линия электропередачи с сосредоточенными параметрами;

Рис. 1.47

Рис. 1.48

- о Series RLC Branch последовательная RLC цепь;
- о Series RLC Load последовательная RLC нагрузка;
- о Surge Arrester разрядник для защиты от перенапряжений;
- Three-Phase Breaker трехфазный выключатель, отключающий токи фаз при прохождении их кривых через нулевые значения;
- Three-Phase Fault блок трехфазных повреждений, который позволяет моделировать различные замыкания (Рис. 1.49);
- о Three-Phase Harmonic Filter трехфазный фильтр гармоник;
- о **Three-Phase Mutual Inductance Z1-Z0** трехфазная взаимная индуктивность;
- **Three-Phase PI Section Line** трехфазная линия электропередачи с сосредоточенными параметрами;
- о **Three-Phase Parallel RLC Branch** трехфазная параллельная RLC цепь;
- Three-Phase Parallel RLC Load трехфазная параллельная RLC нагрузка;
- Three-Phase Series RLC Branch трехфазная последовательная RLC цепь;
- Three-Phase Series RLC Load трехфазная последовательная RLC нагрузка;
- Three-Phase Transformer (Three Windings) трехобмоточный трехфазный трансформатор;
- **Three-Phase Transformer (Two Windings)** блок трехфазного двухобмоточного трансформатора;
- **Three-Phase Transformer 12 Terminals** трехфазный трансформатор с 12 выводами (клеммами);
- Three-Phase Transformer Inductance Matrix Type (Three Windings) блок трехфазного трехобмоточного трансформатора (автотрансформатора) со стержневой (броневой) конструкцией магнитопровода;
- Three-Phase Transformer Inductance Matrix Type (Two Windings) блок трехфазного двухобмоточного трансформатора (автотрансформатора) со стержневой (броневой) конструкцией магнитопровода;
- Zigzag Phase-Shifting Transformer трансформатор с соединением "зигзаг".
| Simulink Library Browser | a service service a | | X |
|---|---|--|---|
| 🗢 🔿 FACTS 🔹 🔩 🔹 | ⅔ ▾ 🗀 📮 ② | | |
| Simscape/SimPowerSyster | ns/Specialized Technolog | gy/Elements | |
| Simscape/SimPowerSyster Simulink Data Acquisition Toolbox Embedded Coder HDL Coder Simscape Foundation Library SimPowerSystems Simscape Components Specialized Technology Application Librarie Electric Drives III Flexible AC Trans Renewable Energy Control and Measu Electrical Sources Elements Interface Elements Machines Power Electronics Utilities Simulink 3D Animation Simulink Extras Stateflow Recently Used Blocks | ns/Specialized Technolog | gy/Elements | |
| | | (Three Windings) | |
| | Three-Phase Transformer
Inductance Matrix Type
(Two Windings) | نےے۔
Zigzag
Phase-Shifting Transformer | • |
| | | | đ |

Рис. 1.49

- 5) Interface Elements элементы интерфейса между SimPowerSystems и электрическими цепями расширения Simscape [10]:
 - Current-Voltage Simscape Interface ампер-вольтный интерфейс, который позволяет соединять цепи SimPowerSystems и электрические цепи Simscape (Рис. 1.50);
 - Current-Voltage Simscape Interface (gnd) ампер-вольтный интерфейс, который позволяет соединять SimPowerSystems и электрические цепи Simscape с использованием заземления;
 - Voltage-Current Simscape Interface вольт-амперный интерфейс, который позволяет соединять цепи SimPowerSystems и электрические цепи Simscape;
 - Voltage-Current Simscape Interface (gnd) вольт-амперный интерфейс, который позволяет соединять SimPowerSystems и электрические цепи Simscape с использованием заземления.

Simulink Library Browser	
< 🔶 FACTS 🔹 🗞 👻 🖼 📮 🍞	
Simscape/SimPowerSystems/Specialized T	echnology/Interface Elements
 Specialized Technology Application Libraries Electric Drives library Electric Drives library Flexible AC Transmission Systems Renewable Energy Library Control and Measurements Library Electrical Sources Elements Interface Elements Machines Measurements Power Electronics Utilities 	Current-Voltage Simscape Interface (gnd) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

Рис. 1.50

Рис. 1.51

6) Machines – блоки для электрических машин (Рис. 1.51):

- о Excitation Systems блоки систем возбуждения синхронных машин (папка):
- Asynchronous Machine SI Units блок асинхронной машины с параметрами, заданными в международной системе единиц;
- Asynchronous Machine pu Units блок асинхронной машины с параметрами в относительных единицах;
- о **DC Machine** блок машины постоянного тока;

- о Excitation System блок системы возбуждения синхронных машин;
- Generic Power System Stabilizer универсальный стабилизатор энергетической системы;
- **Hydraulic Turbine and Governor** гидравлическая турбина и регулятор;
- Multi-Band Power System Stabilizer многополосный стабилизатор энергосистемы;
- Permanent Magnet Synchronous Machine синхронная машина с постоянными магнитами;
- Simplified Synchronous Machine SI Unit блок на основе упрощенной модели синхронной машины с параметрами, заданными в международной системе единиц;
- Simplified Synchronous Machine pu Units блок на основе упрощенной модели синхронной машины в относительных единицах;
- Single Phase Asynchronous Machine однофазная асинхронная машина (Рис. 1.16);
- о Steam Turbine and Governor паровая турбина и регулятор;
- о **Stepper Motor** шаговый двигатель;
- о Switched Reluctance Motor вентильный реактивный двигатель;
- Synchronous Machine SI Fundamental фундаментальная синхронная машина с параметрами в системе СИ;
- Synchronous Machine pu Fundamental фундаментальная синхронная машина с параметрами в относительных единицах;
- Synchronous Machine pu Standard стандартная синхронная машина с параметрами в относительных единицах.
- 7) Measurements блоки измерений (Рис. 1.52):
 - о Current Measurement блок измерения тока;
 - о **Impedance Measurement** блок измерения полного сопротивления;
 - Load Flow Bus (BUS_1) блок шины потока нагрузки (мощности), с помощью которого можно определить потоки нагрузки (мощности) в ветвях, подключенных к шине (узлу). Для получения результатов необходимо двойным щелчком по блоку powergui вызвать его окно и нажать кнопку Load Flow. Появится окно Power Load Flow Tool с данными системы (сети).

Рис. 1.52

После нажатия кнопки **Compute** получим численные значения потоков мощности в соответствующих ветвях, отходящих от шин (узлов). При необходимости, изменяем параметры системы, возвращаемся в окно **Power Load Flow Tool**, нажимаем кнопки **Update**, **Compute** и получаем новый результат. Следует отметить, что программу **powergui** можно вызвать и из окна команд **MATLAB**, как и пример **power_turbine** использования блока **Load Flow Bus**.

- о **Multimeter** блок универсального измерительного прибора;
- Three-Phase V-I Measurement блок измерения напряжения и тока трехфазной системы;
- о Voltage Measurement блок измерения напряжения.

8) Power Electronics – блоки устройств силовой электроники (Рис. 1.53):

- о Detailed Thyristor блок точной модели тиристора;
- о **Diode** − блок диода;
- о Gto блок полностью управляемого тиристора;
- о Ideal Switch блок идеального ключа;
- **IGBT** блок биполярного транзистора с изолированным затвором;
- **IGBT/Diode** блок биполярного транзистора с изолированным затвором и шунтированного обратным диодом;
- **Mosfet** блок силового полевого транзистора с параллельно включенным обратным диодом;

Рис. 1.53

- о Three-Level Bridge блок трехуровневого моста;
- о **Thyristor** блок упрощенной модели тиристора;
- о Universal Bridge блок универсального моста.
- 9) Powergui графический интерфейс пользователя расширения SimPowerSystems.

2. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ, УСТРОЙСТВ И СИСТЕМ ЭЛЕКТРОЭНЕРГЕТИКИ

2.1. Моделирование переходных процессов в индуктивности, конденсаторе и выпрямителе

Моделирование переходных процессов с использованием возможностей **SimPowerSystems** сводится к нахождению необходимых блоков, их соединению, настройке решателя и выводу результатов.

Рассмотрим следующий пример.

Пример 2.1.

Необходимо рассчитать переходной процесс при подключении к источнику постоянного напряжения через активное сопротивление катушки индуктивности и переходной процесс при аналогичном подключении конденсатора.

Рис. 2.1

Параметры источников ЭДС, активных сопротивлений, катушки индуктивности и конденсатора имеют следующие значения: $E_1 = E_2 = 100B$; $R_1 = R_2 = 2OM$; $L = 4M\Gamma H$; $C = 1000M\kappa \Phi$.

Решение

Создаем новую модель (example_2_1.) В окно модели перетаскиваем из библиотеки следующие блоки (Рис. 2.1): DC Voltage Source (2 шт.), Current Measurement (2 шт.), Ideal Switch (2 шт.), Step (2 шт.), Series RLC Branch (4 шт.), Voltage Measurement (2 шт.), Mux (2 шт.), Scope. Соединяем блоки согласно схеме модели.

Изменяем подписи блоков. Наводим на неё курсор, один раз щелкаем левую кнопку мыши и вводим текст на латинице, например, E_1.

В окна параметров блоков E_1 и E_2 (DC Voltage Source) записываем напряжение 100 *B*. В блоки Step_1 и Step_2 записываем ноль. В блоках R_1 , R_2 , L, C (Series RLC Branch) выбираем необходимый тип ветви и вводим соответствующие значения параметров (Рис. 2.2). Заносим время расчета: 0,005 *c*. После нажатия кнопки **Run** получим кривые, представленные на рис 2.3. Здесь, пунктиром показаны токи, сплошной линией – напряжения. На верхнем графике показаны кривые тока и напряжения на катушке индуктивности, а на нижнем – кривые тока и напряжения на конденсаторе.

🚹 Block Parame	eters: R1
Series RLC Br	anch (mask) (link)
Implements a Use the 'Bran elements from	series branch of RLC elements. ch type' parameter to add or remove n the branch.
Parameters	
Branch type:	R
Resistance (0	RLC R
2	L
Measurement	C RL RC LC Open circuit
<u>O</u> K	<u>Cancel Help</u> Apply

Рис. 2.2

Рис. 2.3

Рис. 2.4

При моделировании часто возникает задача изменения в цикле какого-либо параметра с целью анализа его влияния на объект исследований. Такая задача легко решается с помощью SimPowerSystems модели, которая запускается программой, написанной на MATLAB.

Пример 2.2.

Определить значение активного сопротивления, при котором периодический характер разряда конденсатора на *RL* цепь становится апериодическим. Параметры цепи: $C = 10000 \text{ мк} \Phi$, $L = 100 \text{ м} \Gamma h$.

Конденсатор предварительно заряжен до 100 *В*. Время расчета 0,1 *с*. Активное сопротивление *R* изменяется от 5 до 25 *Ом* с шагом 5 *Ом*.

Решение

Для решения этой задачи воспользуемся блоками SimPowerSystems и создадим модель, представленную на рис. 2.4 (example_2_2). С помощью двух блоков To Workspace данные с измерителя тока и часов передаются в рабочую область и помещаются в переменные current и time.

Для организации цикла воспользуемся М-файлом (Script), текст которого представлен ниже.

```
% example 2 2 m.m
clear all; 8 Очистка Рабочей области (Workspace)
open('example 2 2.slx') % Открытие модели figure;
% Подготовка окна для вывода кривых графика
xlabel('time, s'); ylabel('current, A'); %Подписи осей
grid on; % Создание координатной сетки
for R = 5:5:26 % Цикл расчета
% Присвоение значения активному сопротивлению блока:
set param('example 2 2/Series RLC
Branch', 'Resistance', num2str(R));
sim('example 2 2.slx'); % Запуск модели
switch R % Использование конструкции выбора switch для
         % изменения цвета кривых
    case 5
        С='q'; % Зеленый цвет
    case 10
        С='r'; % Красный
    case 15
        C='b'; % Синий
    case 20
        C='m'; % Magenta -- малиновый
    case 25
        C='k'; % Black - k - черный (т.к. b закреплен за
               % синим)
end %Koney switch
line(time, current, 'Color', C, 'LineWidth', 2); % Построение
                                                  % графиков
```

end % Окончание цикла

Описание этого m-файла не дается, поскольку комментарии, данные к каждой строке m-файла, позволяют раскрыть алгоритм его работы.

Результаты расчета, представленные на рис. 2.5, свидетельствуют о том, что при активном сопротивлении $R \ge 200M$ разряд конденсатора принимает апериодический характер.

Следует отметить, что основной целью данного примера была демонстрация взаимодействия m-файла (Script) с моделью SimPowerSystems, а не определение точного численного значения активного сопротивления, которое может быть рассчитано аналитически.

Особую актуальность SimPowerSystems приобретает при решении нелинейных задач, когда аналитические методы становятся малоэффективными из-за их громоздкости или низкой точности, вызванной допущениями. В этом случае для решения системы дифференциальных уравнений этих нелинейных устройств и объектов используют численные методы, большинство из которых реализованы в MATLAB.

Рис. 2.5

В качестве примера расчета такой нелинейной системы рассмотрим модель однополупериодного выпрямителя.

Пример 2.3.

Для вызова примера набираем в окне команд (Command Window) название файла >> power_diode. Как всегда, имеются и альтернативные пути: в библиотеке SimPowerSystems Specialized Technology переходим в раздел Power Electronics, выделяем блок Diode, нажимаем правую клавишу мышки, в выпадающем окне переходим на позицию Help for the Diode block (Puc. 2.6).

Рис. 2.6

Рис. 2.7

Попадаем в окно с описанием диода, в котором находим заголовок **Example**, под которым нажимаем на выделенное слово **power_diode**.

В папку **power_electronics** с демонстрационными примерами можно попасть и указав следующий путь в окне программы **Компьютер** операционный системы **Windows**: C:\Program Files\MATLAB\R2014b \toolbox\physmod\powersys\powerdemo \power_electronics.

После загрузки сохраняем её в удобной для работы папке под новым именем, например, **example_2_3**. (Если по каким-либо причинам не удалось обнаружить эту модель, то её можно легко собрать, воспользовавшись библиотекой блоков. Параметры блоков имеют следующие значения: у источника они указаны в названии блока, т.е. напряжение – 100 В, частота – 60 Гц; диод может иметь параметры, установленные по умолчанию; в блоке сопротивлений –1 Ом и 1 мГн.).

В этой модели (рис. 2.7) используются знакомые блоки, однако имеется и новшество: от порта (выхода) **m** блока **Diode** до **Demux** используется "странная" линия. Это объясняется тем, что в окне **Block Parameters Diode** активизирована позиция **Show measurements: Diode** и значение тока и напряжения диода передаются с этого порта на любой приемник расширения **Simulink**.

Рис. 2.8

Следует отметить, что источник переменного напряжения имеет частоту 60 $\Gamma \mu$. В результате моделирования получаем кривые тока и напряжения на нагрузки и диоде (Рис. 2.8). В данной схеме ток диода равен току нагрузки. При положительном напряжении диод открыт и проводит ток. Падение напряжения на нем незначительное. При отрицательном напряжении и прохождении тока через нулевое значение диод закрывается, его сопротивление резко возрастает и падение напряжения на диоде становится практически равным напряжению сети (Vak).

Следует подчеркнуть, что из-за индуктивности в цепи нагрузки напряжение на нагрузке в конце полупериода принимает отрицательное значение. Известно, что это связано с отставанием тока от напряжения. Когда ток становится равен нулю, то запирающие свойства диода восстанавливаются при наличии на нем отрицательного напряжения.

Нелинейные сопротивления в электрических сетях приводят к появлению высших гармоник, которые оказывают негативное влияние на релейную защиту, электрические машины и другие устройства. В связи с этим, определенный интерес представляет расчет высших гармоник.

Tunction Block Parameters: Fourier	
Fourier (mask) (link)	
Fourier analysis of the input signal over a running window of one cycle of the fundamental frequency.	
For the first cycle of simulation, the outputs are held to the value specified in the Initial input parameter.	
Parameters	
Fundamental frequency (Hz):	Ξ
50	
Harmonic n (0=DC, 1=fundamental):	
[0:5]	
Initial input [Mag, Phase (degrees)]:	
[0, 0]	
Sample time:	
0	-
OK Cancel Help Apply	

Рис. 2.9

Пример 2.4.

Определим спектральный состав и коэффициент нелинейных искажений (THD) однополупериодного выпрямителя при чисто активной нагрузке и частоте 50 Гц.

Решение

За основу возьмем предыдущий пример, сохранив его как example_2_4. В названии блока источника переменного напряжения поменяем цифру 6 на 5. В окне параметров блока установим частоту 50 $\Gamma \mu$. Удаляем в названии блока сопротивления буку L. В окне параметров блока последовательных сопротивлений установим в **Branch** type: значение **R**.

В окно модели переносим блоки Fourier и THD из раздела **Measurements** библиотеки SimPowerSystems Specialized Technology, а также три блока Display из библиотеки Simulink. Заносим в блок THD частоту 50 Γq , а в блок Fourier данные, которые представлены на рис. 2.9. Соединяем эти блоки согласно рис. 2.10, причем входным сигналом для них служит ток, который протекает как в нагрузке, так и в источнике переменного напряжения.

Рис. 2.10

Рис. 2.11

Запускаем программу. На дисплеях отображаются значения амплитуд и фаз гармоник (от нулевой до пятой), а также значение коэффициента нелинейных искажений. Кривые токов и напряжения представлены на рис. 2.11.

Scope' para	ameters	
General Histor	y Style	
🔲 Limit data p	oints to last: 5000	
Save data to	o workspace	
Variable name:	ScopeData_2_4	
Format:	Structure with time	•
	OK Cancel	Help Apply

Рис. 2.12

Спектральный состав и коэффициент нелинейных искажений так же можно рассчитать с помощью программы **powergui**. Для этого необходимо записать в файл данные, поступающие в **Scope**. С этой целью в окне **Scope** нажимаем кнопку **Parameters**, переходим во вкладку **History** и вносим в неё изменения согласно рис. 2.12.

Рис. 2.13

После этого двойным щелчком вызываем программу **powergui**, нажимаем **FFT Analysis** (*Fast Fourier transform*), при этом появляется окно, представленное на рис. 2.13.

В верхнем правом углу окна имеются окошки с названием переменной, созданной в **Scope**, и наименованием сигнала, частотный спектр которого требуется найти. Обязательно следует изменить основную частоту (**Fundamental frequency**) на 50 $\Gamma \mu$. Как и в предыдущем случае учитываем только шесть гармоник. В связи с этим, максимальную частоту (**Max frequency**) уменьшим до 300 $\Gamma \mu$.

В верхнем левом углу имеется окно с одним периодом исследуемой кривой. После нажатия кнопки **Display**, расположенной в нижнем правом углу, осуществляется расчет и появляется спектральный состав сигнала (фундаментальной) относительно основной гармоники. Следует напомнить, что частота основной гармоники составляет 50 Ги и её величина, принятая за 100 %, выходит за границы данного графика, т.е. она не равна 70 % как это может показаться из графика. Для того, чтобы в style (стиль вывода), убедиться, изменим Display ЭТОМ выбрав List(relative to fundamental). Нажав кнопку Display, получим численные значения амплитуд и фаз, представленные на рис. 2.14.

Следует отметить, что эти данные практически совпали с данными, полученными с помощью блоков **Fourier** и **THD** (Рис. 3.10), что свидетельствует об идентичности рассмотренных подходов определения спектрального состава и коэффициента нелинейных искажений (**THD**).

Существенным недостатком однополупериодного выпрямителя является значительный коэффициент нелинейных искажений и наличие постоянной составляющей в токе, протекающем через диод. В связи с этим широкое распространение получил трехфазный мостовой выпрямитель, модель которого рассматривается в следующем примере.

Sampling time	=	1.8388e-05 s		*
Samples per cycle	=	1088		
DC component	=	37.75		
Fundamental	=	59.42 peak (42.02 rms)		
THD	=	43.92%		
0 Hz (DC):	63.52%	90.0°	
50 Hz (F	nd):	100.00%	0.1°	
100 Hz (h	2):	42.82%	269.9°	
150 Hz (h	3):	0.31%	180.3°	
200 Hz (h	4):	8.56%	269.8°	
250 Hz (h	5):	0.18%	180.4°	
	-			÷

Рис. 2.14

Пример 2.5.

Определим спектральный состав и коэффициент нелинейных искажений (THD) трехфазного мостового выпрямителя, работающего на активную нагрузку, при частоте сети 50 Ги.

Решение

Сохраним модель *примера* 2.4 под новым названием **example_2_5**. Скопируем блок источника переменного напряжения для создания фаз B и C. Откроем окна параметров этих блоков и занесем в них сдвиги фаз **Phase (deg):** 120 и –120 соответственно. Воспользуемся блоком **Three-Phase V-I Measurement** для измерения трехфазных токов и напряжений. Перенесем блоки **Demux** и **Terminator**, которые нужны для ввода значений фазы A, в блоки **Fourier** и **THD**. Переносим из библиотеки блок **Universal Bridge** и подключаем его к трехфазному источнику напряжения и нагрузке постоянного тока, активное сопротивление которой составляет 1 *Ом*. Соединим все блоки согласно схеме модели, представленной на рис. 2.15.

Рис. 2.15

Рис. 2.16

Рис. 2.17

Графические результаты моделирования, представленные на рис. 2.16, свидетельствуют о том, что кривые тока на входе выпрямителя симметричны относительно оси времени, т.е. в них присутствуют только нечетные гармоники.

Рис. 2.18

Постоянных составляющих в кривых токов нет. В силу этого в окне **Harmonic (0=DC, 1=fundamental):** блока **Fourier** укажем нечетные гармоники с 1 по 13 (Рис. 2.17).

В блоке **Scope** изменим название файла, в который записываются значения токов, на **ScopeData_2_5**.

Как и в случае с однополупериодным выпрямителем воспользуемся программой **Powergui** (Рис. 2.18). Полученные результаты свидетельствуют о том, что коэффициент нелинейных искажений в трехфазном мостовом выпрямителе меньше, чем в однополупериодном. Численные значения, полученные в ходе расчетов, представлены на рис. 2.19. Наибольшая гармоника – пятая. Её следует подавлять с помощью фильтров.

В библиотеке SimPowerSystems Specialized Technology фильтры реализованы в блоке Three-Phase Harmonic Filter. Демонстрационная модель power_harmonicfilter, которую можно запустить из окна команд, дает представление об использовании фильтров для подавления высших гармоник в энергосистеме.

DC component	= 1.316e-05	
Fundamental	= 218.7 peak (154.6 rms)	
THD = 30.	81%	
0 Hz (DC):	0.00% 270.0°	
50 Hz (Fnd):	100.00% -0.2°	
100 Hz (h2):	0.01% 179.8°	
150 Hz (h3):	0.11% 179.5°	
200 Hz (h4):	0.01% 179.0°	
250 Hz (h5):	22.70% 179.1°	
300 Hz (h6):	0.01% -1.2°	
350 Hz (h7):	11.27% 178.8°	
400 Hz (h8):	0.00% 177.5°	=
450 Hz (h9):	0.11% -1.6°	
500 Hz (h10):	0.00% -2.6°	
550 Hz (h11):	9.11% -1.9°	
600 Hz (h12):	0.01% 177.6°	
650 Hz (h13):	6.42% -2.2°	
700 Hz (h14):	0.00% -4.1°	
750 Hz (h15):	0.11% 177.4°	
800 Hz (h16):	0.00% 175.7°	
850 Hz (h17):	5.71% 177.0°	
900 Hz (h18):	0.00% -3.6°	
950 Hz (h19):	4.48% 176.8°	Ψ.

Рис. 2.19

2.2. Моделирование трансформаторов

В разделе Elements библиотеки SimPowerSystems Specialized **Technology** представлены многочисленные модели трансформаторов и автотрансформаторов, которые можно использовать при моделировании энергосистем и систем электроснабжения предприятий. Подробно рассмотрим некоторые из них.

2.2.1. Однофазный трансформатор

Начнем с блока силового трансформатора, в котором моделирование осуществляется без учета насыщения магнитной системы (Linear Transformer). Этот блок позволяет моделировать однофазные двух- или трехобмоточные трансформаторы.

Электромагнитная схема такого трансформатора представлена на рис. 2.20.

Рис. 2.20

Окно параметров блока с данными по умолчанию представлено на рис. 2.21.

Здесь:

- Units единицы измерения параметров, которые могут задаваться в относительных единицах или в международной системе единиц (SI). По умолчание используются относительные единицы (pu);
- ✓ Nominal power and frequency [Pn(VA) fn(Hz)]: номинальные мощность (полная) и частота подводимого к трансформатору напряжения;
- ✓ Winding 1 parameters [V1(Vrms) R1(pu) L1(pu)]: параметры первой обмотки: действующее значение напряжения (*B*), активное сопротивление (о.е.) и индуктивность рассеяния (о.е.) обмотки;

Block Parameters: Linear Transformer		
Linear Transformer (mask) (link)		
Implements a three windings linear transformer.		
Click the Apply or the OK button after a change to the Units popup to confirm the conversion of parameters.		
Parameters		
Units pu		
Nominal power and frequency [Pn(VA) fn(Hz)]:		
[250e6 60]		
Winding 1 parameters [V1(Vrms) R1(pu) L1(pu)]:		
[7.35e+05 0.002 0.08]		
Winding 2 parameters [V2(Vrms) R2(pu) L2(pu)]:		
[3.15e+05 0.002 0.08]		
Three windings transformer		
Winding 3 parameters [V3(Vrms) R3(pu) L3(pu)]:		
[3.15e+05 0.002 0.08]		
Magnetization resistance and inductance [Rm(pu) Lm(pu)]:		
[500.02 500]		
Measurements All voltages and currents		
Use SI units		
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply		

Рис. 2.21

- ✓ Winding 2 parameters [V2(Vrms) R2(pu) L2(pu)]: параметры второй обмотки: действующее значение напряжения (*B*), активное сопротивление (о.е.) и индуктивность рассеяния (о.е.) обмотки;
- ✓ Three windings transformer если флажок установлен, то трансформатор трехобмоточный, если нет двухобмоточный;
- ✓ Winding 3 parameters [V3(Vrms) R3(pu) L3(pu)]: параметры третьей обмотки: действующее значение напряжения (*B*), активное сопротивление (о.е.) и индуктивность рассеяния (о.е.) обмотки;

- ✓ Magnetization resistance and inductance [Rm(pu) Lm(pu)]: активное сопротивление и взаимная индуктивность обмоток намагничивающей ветви (рис. 2.20);
- ✓ Measurements измеряемые параметры выбираются из выпадающего списка:
 - Winding voltages напряжения обмоток;
 - Winding currents токи обмоток;
 - **Magnetization current** ток намагничивания;
 - All voltages and currents все напряжения и токи.

Пример 2.6.

Рассчитать ток короткого замыкания в первой и во второй обмотках трансформатора TM-1000/10 из *примера 1.3*, воспользовавшись блоком **Linear Transformer**.

Решение

Определяем параметры обмоток трансформатора и намагничивающей ветви с учетом следующих допущений: параметры первой обмотки и приведенные параметры второй обмотки равны; при подсчете номинального тока пренебрегаем намагничивающим током; на холостом ходу ЭДС и напряжение первой обмотки равны друг другу.

С учетом принятых допущений и на основании данных, представленных в таблице 1.1 (стр. 20), находим активные сопротивления и индуктивности рассеяния обмоток трансформатора, а также параметры намагничивающей ветви:

 $I_{1_{H}} \approx \frac{S_{2_{H}}}{\sqrt{3}U_{1_{H}}} = \frac{1000}{\sqrt{3} \cdot 10} = 57,7367A$ – номинальный фазный ток первичной

обмотки;

 $z_{\kappa} = \frac{U_{1\mu} \cdot u_{\kappa}\%}{\sqrt{3}I_{1\mu}100\%} = \frac{10000 \cdot 5,5\%}{\sqrt{3} \cdot 57,7367 \cdot 100\%} = 5,5OM$ — полное сопротивление

короткого замыкания;

 $r_{\kappa} = \frac{P_{\kappa}}{3I_{1\mu}^2} = \frac{12000}{3 \cdot 57,7367^2} = 1,19990M$ – активное сопротивление короткого

замыкания;

 $R_1 \approx R_2' = \frac{r_{\kappa}}{2} = \frac{1,1999}{2} = 0,59995O_{M}$ – активное сопротивление первой

обмотки и приведенное активное сопротивление второй;

 $R_2 = \frac{R'_2}{k^2} = \frac{0,59995}{25^2} = 0,00095990M$ – активное сопротивление второй обмотки, здесь $k \approx 10/0.4 = 25$ – коэффициент трансформации;

 $x_{\kappa} = \sqrt{z_{\kappa}^2 - r_{\kappa}^2} = \sqrt{5,5^2 - 1,1999^2} = 5,3675Om$ – реактивное сопротивление короткого замыкания;

 $L_1 \approx L_2' = \frac{x_{\kappa}}{2\omega} = \frac{5,3675}{2 \cdot 2\pi \cdot 50} = 8,5426 M \Gamma H$ – индуктивность рассеяния первой

обмотки и приведенная индуктивность рассеяния второй обмотки;

 $L_2 = \frac{L'_2}{k^2} = \frac{8,5426}{25^2} = 0,01366848 M \Gamma \mu$ – индуктивность рассеяния второй

обмотки;

$$P_{xx} = 3E_{\phi 1}I_{xxa} \approx 3U_{\phi 1}\frac{U_{\phi 1}}{R_m} \Longrightarrow R_m = \frac{U_1^2}{P_{xx}} = \frac{10000^2}{1900} = 52631,580M - \text{активное}$$

сопротивление параллельной ветви намагничивающего контура схемы замещения, потери в которой равны потерям холостого хода (магнитным потерям);

$$I_{xxa} = \frac{U_{\phi 1}}{R_m} = \frac{U_1}{\sqrt{3} \cdot R_m} = \frac{10000}{\sqrt{3} \cdot 52631,58} = 0,1097A - \text{активная составляющая}$$

тока холостого хода;

 $I_{xx} = I_{1\mu} \frac{I_{xx}\%}{100\%} = 57,7367 \frac{1,7}{100} = 0,9815 A - \text{ток холостого хода;}$ $I_{xxr} = \sqrt{I_{xx}^2 - I_{xxa}^2} = \sqrt{0,9815^2 - 0,1097^2} = 0,9754A - \text{реактивная}$

(намагничивающая) составляющая тока холостого хода;

$$L_{m} = \frac{U_{\phi 1}}{\omega I_{xxr}} = \frac{U_{1}}{\sqrt{3}\omega I_{xxr}} = \frac{10000}{\sqrt{3} \cdot 314,159 \cdot 0,9754} = 18,84169\Gamma \mu \qquad - \qquad \text{взаимная}$$

индуктивность обмоток.

Создаем ново окно SimPowerSystems модели: Переносим в него из библиотеки Simulink по одному экземпляру следующие блоки: (подраздел Commonly Used Blocks) Scope; Mux; Gain; (Sinks) Display; (Math Operations) Real-Imag to Complex; Abs; (Sources) Step. Из библиотеки SimPowerSystems \rightarrow Specialized Technology перенесем блоки: (Electrical Sources) AC Voltage source; (Measurements) Voltage Measurement; Current Measurement; (Control and Measurements Library \rightarrow Measurements) Power; RMS; (Elements) Breaker, Linear Transformer, Three-Phase Series RLC Branch.

После того, как блоки перемещены в окно модели в блоках **Power** и **RMS**, необходимо поменять частоту 60 $\Gamma \mu$ на 50 $\Gamma \mu$, в блоке **Scope** сделать два входа (*две оси*), в блок **Gain** внести цифру **3** для расчета мощности трех фаз. После этого блоки можно копировать. Для этого необходимо, удерживая на клавиатуре клавишу **Ctrl**, выделить курсором блок.

Configuration Parameters	: example_2_6/Configuratio 🗖 🗖 🔀
Stop time: 0.12	
Solver: Relative tolerance:	ode23tb (stiff/TR-BDF2) Ie-6
Absolute tolerance:	auto
о ОК	<u>Cancel Help</u> Apply

Рис. 2.22

Нажать левую клавишу мышки, перетащить копию блока в требуемую позицию, отпустить клавишу **Ctrl** и левую клавишу мышки.

Далее собираем схему, представленную на рис. 2.23, и сохраняем её в файле **example_2_6**. Время расчета задаем равное **0.12** *c*. Во вкладке **Simulation** \rightarrow **Model Configuration Parameters** при необходимости вносим изменения по решателю и относительной точности согласно рис. 2.22. В блоке **Step** устанавливаем **Step time** равное 0.02 *c*.

Поскольку рассматривается одна фаза трехфазного трансформатора, источника то В окно параметров переменного напряжения необходимо ввести амплитудное значение фазного напряжения $U_{md1} = \sqrt{2}U_1/\sqrt{3}$, т.е. sqrt(2)*10000/sqrt(3), и частоту 50 Г μ .

В окне параметров блока сопротивлений выберем тип ветви R и внесем в окно **Resistance** (Ohms) три буквы inf, что означает Последнее необходимо для бесконечность. моделирования установившегося режима холостого хода. Запускаем модель. Результаты этого моделирования представлены на дисплеях рис. 2.23. В верхнем правом углу на Display P_1, Q_1, S_1 показаны значения мощностей. Как видим, эти потери не отличаются от паспортных значений, а токи холостого хода достаточно близки (Смотри **Display I_1** в верхнем левом значительную реактивную углу). Следует отметить мощность, потребляемую трансформатором в режиме холостого хода (16,9 кВАр). В блоке **Display P_1, Q_1, S_1** установлен формат **long**.

Проведем опыт короткого замыкания. Для этого изменим сопротивление нагрузки на **1e-12** *Ом*, **Step time** на **0.02** *c*, напряжение источника уменьшим до напряжения короткого замыкания, т.е. до sqrt(2)*10000/sqrt(3)*0.055 B, а относительную точность установим **1e-8**.

Рис. 2.23

Рис. 2.24

Результаты расчета, представленные в дисплеях на рис. 2.24, показывают, что потери короткого замыкания совпали с паспортными данными, а токи обмоток также достаточно близки паспортным значениям, что свидетельствует о хорошей сходимости.

Следует отметить, что в модели имеется возможность рассчитать токи и напряжения в установившийся режим работы, не прибегая к решению дифференциальной системы уравнений, а используя алгебраические уравнения. Для этого двойным щелчком мышки по блоку **Continuous** вызываем программу **powergui**, нажимаем на кнопку **Steady-State Voltages and Currents**. При необходимости изменяем параметры схемы, например, замыкаем вторичную обмотку, нажимаем **Update Steady State values** и получаем результаты, представленные на рис. 2.25.

Расчет переходного процесса короткого замыкания осуществим при неблагоприятной фазе $\alpha_0 = \varphi_{\kappa} + \pi/2 = 1.3509 + \pi/2 = 2.9217$. Введем это значение фазового сдвига в окно параметров источника переменного напряжения, преобразовав радианы в градусы, т.е. 2.9217*180/рі. На рис. 2.26 представлены кривые переходного процесса во второй обмотке трансформатора. Значения токов и напряжений совпали с результатами предыдущих расчетов, полученными с помощью **МАТLAB** и **Simulink** (Рис. 1.16 и Рис. 1.29). Кривая напряжения в данном случае представлена более корректно, т.к. при коротком замыкании напряжение равно нулю, при условии, что равно нулю переходное сопротивление в месте КЗ.

Следует отметить, что и кривая тока в первой обмотке качественно имеет такой же вид, как и во второй обмотке (Рис. 2.27).

Powergui Steady-State Voltages and Currents Tool. model: example_2_6		
Steady state values:		
MEASUREMENTS:	*	Units: RMS values
1: 'U V 2 ' = 2.62 Vrms 90.64°		Frequency:
2: 'U V 1 ' = 5773.50 Vrms 167.40°		
3: 'I I I ' = 1047.31 Arms 90.63°		Display:
4: 'I_I_2 ' = 26170.53 Arms 90.64°		States Measurements Sources Nonlinear elements Format:
		Ordering: Name then value
		Update Steady State Values
	Ŧ	Close

Рис. 2.25

Рис. 2.26

Рис. 2.27

Примечание. При разработке данной модели возникли проблемы. При непосредственном подключении ко второй обмотке трансформатора активного сопротивления $\mathbf{R}_{nagr} = 1e-12$ (режим вопреки ожиданиям короткого замыкания) в кривой тока отсутствовала апериодическая составляющая. С другой стороны, при **R** nagr = 1e+12(режим холостого хода) появлялась неизменная апериодическая составляющая. Обойти эти проблемы удалось С помощью управляемого блока Breaker, на который подавался сигнал от Step в нулевой (или чуть больше) момент времени.

Также решить эти проблемы удалось с помощью программы powergui, во вкладке которой имеется кнопка Initial States Setting (Задание начальных значений), открывающая окно, в котором нужно отметить To Zero (нулевые начальные значения) для режима короткого замыкания или To Steady State (Начальные значения установившегося режима) для режима холостого хода. Такая же проблема, но для цепи постоянного тока, была описана в [2]. Естественно, что первый способ решения этих проблем боле предпочтителен.

2.2.2. Трехфазный трансформатор

большие Существенно возможности расчету ПО систем электроснабжения предоставляют многочисленные блоки трехфазных трансформаторов (автотрансформаторов). Рассмотрим подробно один из них, например Three-Phase Transformer (Two Windings) – трехфазный двухобмоточный трансформатор с ДВУМЯ обмотками. В модели нелинейность учитывается характеристики намагничивания магнитопровода. В первой вкладке окна параметров блока (рис. 2.28) для каждой обмотки выбирают из выпадающего списка схему соединения фаз обмотки (звезда или треугольник) и группу соединения:

- Y соединение фаз обмотки в звезду;
- Уп звезда с доступом к нейтрали;
- Yg звезда с заземленной нейтралью;
- Delta (D1) соединение фаз обмотки в треугольник, группа соединения "первая";
- Delta (D11) соединение фаз обмотки в треугольник, группа соединения "одиннадцатая".

Следует отметить, что стандартными являются следующие группы соединения: Y/Y–0 (нулевая); D/Y–11; Y/D–11. Расчет с учетом нелинейной характеристики намагничивания осуществляется, если выбрана позиция Saturable core. После её активизации открываются ещё две позиции Simulate hysteresis (моделирование гистерезиса) и Specify initial fluxes (задать начальные потоки).

🔁 Block Parameter	rs: Three-Phase Tra	ansforme	er (Two Winding	s) X
Three-Phase Transformer (Two Windings) (mask) (link)			k) 🔺	
This block implements a three-phase transformer by using three single-phase transformers. Set the winding connection to 'Yn' when you want to access the neutral point of the Wye. \equiv				
Click the Apply of popup to confirm	or the OK button n the conversion	after a of para	change to the ameters.	e Units
Configuration	Parameters	Advar	nced	
Winding 1 conne	ection (ABC term	inals):	Yg	
Winding 2 conne	ction (abc termi	inals):	Y Yn	
Saturable core	9		Yg Delta (D1)	
Measurements	None		Delta (D11)	
•				Þ
	ОКСа	ancel	Help	Apply

Рис. 2.28

При выборе первой из них необходимо использовать файл с данными кривой гистерезиса при работе с **powergui**, а при выборе второй – откроется доступ к окну во вкладке **Parameters**, в которой можно задать начальные значения потока по фазам (остаточный поток). В выпадающем окне позиции **Measurements** можно выбрать переменные, которые будут доступны для отображения.

Во вкладке **Parameters** (Рис. 2.29) выбираем систему SI (СИ) или ри (относительные единицы), в которой будут представлены параметры трансформатора. Далее следуют окна, в которые следует занести соответствующие параметры:

- Nominal power and frequency [Pn(VA) , fn(Hz)] номинальная мощность и частота;
- Winding 1 parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)] параметры первой обмотки: линейное напряжение (действующее); активное сопротивление обмотки (Ом); индуктивность рассеяния (Гн);
- Winding 2 parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)] аналогичные данные второй обмотки;
- Magnetization resistance Rm (Ohm) активное сопротивление ветви намагничивания (Ом);
- Magnetization inductance Lm (H) индуктивность (взаимная индуктивность) намагничивающего контура;

- Saturation characteristic характеристика насыщения (кривая намагничивания);
- Initial fluxes начальные значения потоков.

Во вкладке **Advanced** (продвинутый) можно установить дополнительный параметр – разрыв алгебраического контура в дискретной модели.

🔁 Block Parameters: Three-Phase Transformer (Two Windings)				
Three-Phase Transformer (Two Windings) (mask) (link)				
This block implements a three-phase transformer by using three single-phase transformers. Set the winding connection to 'Yn' when you want to access the neutral point of the Wye. Click the Apply or the OK button after a change to the Units				
Configuration Parameters Advanced				
Units SI 🔹				
Nominal power and frequency [Pn(VA) , fn(Hz)]				
[250e6 , 60]				
Winding 1 parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)]				
[7.35e+05 4.3218 0.45856]				
Winding 2 parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)]				
[3.15e+05 0.7938 0.084225]				
Magnetization resistance Rm (Ohm)				
1.0805e+06				
Magnetization inductance Lm (H)				
2866				
Saturation characteristic [i1(A) , phi1(V.s) ; i2 , phi2 ;]				
[0 0;0.66653 1910.3;277.72 2419.7]				
Initial fluxes [phi0A , phi0B , phi0C] (V.s):				
[1273.5 -1273.5 1114.3]				
<u>O</u> K <u>C</u> ancel <u>H</u> elp <u>A</u> pply				

Рис. 2.29

Рассмотрим пример модели с этим блоком для расчета токов короткого замыкания.

Пример 2.7.

Рассчитать динамические режимы при трех-, двух - и однофазных коротких замыканиях трехфазного двухобмоточного трансформатора с параметрами из примера *Пример 2.6*.

Решение

Создаем новую модель, которую сохраняем в файле example_2_7.

Block Parameters: Three-Phase Source Three-Phase Source (mask) (link) Three-phase voltage source in series with RL branch. Parameters Load Flow Phase-to-phase rms voltage (V): 10000 Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	
Three-Phase Source (mask) (link) Three-phase voltage source in series with RL branch. Parameters Load Flow Phase-to-phase rms voltage (V): 10000 Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Block Parameters: Three-Phase Source
Three-phase voltage source in series with RL branch. Parameters Load Flow Phase-to-phase rms voltage (V): 10000 Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Three-Phase Source (mask) (link)
Parameters Load Flow Phase-to-phase rms voltage (V): 10000 10000 Phase angle of phase A (degrees): 0 Prequency (Hz): 50 Internal connection: Yg • Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Three-phase voltage source in series with RL branch.
Phase-to-phase rms voltage (V): 10000 Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Parameters Load Flow
10000 Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Phase-to-phase rms voltage (V):
Phase angle of phase A (degrees): 0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	10000
0 Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Phase angle of phase A (degrees):
Frequency (Hz): 50 Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000 QK Cancel Help Apply	0
50 Internal connection: Yg □ Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Frequency (Hz):
Internal connection: Yg Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	50
Specify impedance using short-circuit level Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Internal connection: Yg
Source resistance (Ohms): 0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000	Specify impedance using short-circuit level
0 Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000 QK Cancel Help Apply	Source resistance (Ohms):
Source inductance (H): 0 Base voltage (Vrms ph-ph): 10000 <u>QK Cancel Help Apply</u>	0
0 Base voltage (Vrms ph-ph): 10000 <u>OK Cancel H</u> elp Apply	Source inductance (H):
Base voltage (Vrms ph-ph): 10000 OK Cancel Help	0
10000 OK Cancel Help Apply	Base voltage (Vrms ph-ph):
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply	10000
<u>O</u> K <u>C</u> ancel <u>H</u> elp <u>A</u> pply	
<u>O</u> K <u>C</u> ancel <u>H</u> elp <u>A</u> pply	
	<u>O</u> K <u>C</u> ancel <u>H</u> elp <u>A</u> pply

Рис. 2.30

Переносим в неё из библиотеки Simulink по одному экземпляру следующих блоков: (подраздел Commonly Used Blocks) Scope: Мих, (Signal Routing) From, (Sinks) Display; (Math Operations) Real-Imag to **Complex**: Abs. Из библиотеки SimPowerSystems \rightarrow **Specialized Technology** перенесем блоки: (*Electrical Sources*) **Three-Phase Source**; (Measurements) Current Measurement, Three-Phase V-I Measurement, Measurement; Voltage (Control and Measurements Library \rightarrow Measurements) Power (3ph, Instantaneous), RMS; (Elements) Three-Phase Fault, Three-Phase Series RLC Load, Three-Phase Transformer (Two Windings).

В блоке **Three-Phase Source** задаем параметры согласно рис. 2.30. В окно **Phase angle of phase A (degrees):** занесено численное значение неблагоприятной фазы короткого замыкания. Поскольку в предыдущих примерах расчета использовался идеальный источник напряжения, то в этом блоке сопротивления источника задаем равные нулю.

В блоке измерения трехфазных напряжений и токов **Three-Phase V-I Measurement** вносим изменения согласно рис. 2.31.

Block Parameters: Bus_1
Three-Phase VI Measurement (mask) (link)
Ideal three-phase voltage and current measurements.
The block can output the voltages and currents in per unit values or in volts
and amperes.
Parameters
Voltage measurement phase-to-ground
✓ Use a label
Signal label (use a From block to collect this signal)
Vabc_B_1
Voltages in pu, based on peak value of nominal phase-to-ground voltage
Current measurement yes
✓ Use a label
Signal label (use a From block to collect this signal)
Iabc_B_1
Currents in pu
Output signals in: Complex *
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply

Рис. 2.31

Копируем его и изменяем название блока на **Bus_1** (шина первой обмотки, шина высокого напряжения). После этого копируем этот блок. Копию блока переименовываем на **Bus_2** (шина низкого напряжения). Открываем окно его параметров, в окне **Signal label** (обозначение сигнала) заменяем цифру 1 на 2 и получаем **Vabc_B_2**. Аналогично поступаем с обозначением тока.

В окне параметров блока **Three-Phase Transformer (Two Windings)** по вкладке **Configuration** устанавливаем соединение **Y/Yn-0**. Во вкладке **Parameters** вносим численные значения параметров обмоток и намагничивающей ветви согласно рис. 2.32. Изменяем название блока трасформатора на **TM-1000/10**.

Block Parameters: TM-1000/10
Three-Phase Transformer (Two Windings) (mask) (link)
This block implements a three-phase transformer by using three single-phase transformers. Set the winding connection to 'Yn' when you want to access the neutral point of the Wye.
Click the Apply or the OK button after a change to the Units popup to confirm the conversion of parameters.
Configuration Parameters Advanced
Units SI
Nominal power and frequency [Pn(VA) , fn(Hz)]
[1000e3 50]
Winding 1 parameters [V1 Ph-Ph(Vrms), R1(Ohm), L1(H)]
[10000 0.59995 8.5426e-3]
Winding 2 parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)]
[400 0.0009599 0.01366848e-3]
Magnetization resistance Rm (Ohm)
52631.58
Magnetization inductance Lm (H)
18.84169
Saturation characteristic [i1(A) , phi1(V.s) ; i2 , phi2 ;]
[0 0;0.66653 1910.3;277.72 2419.7]
Initial fluxes [phi0A , phi0B , phi0C] (V.s):
OK Cancel Help Apply

Рис. 2.32
Block Parameters: Three-Phase Fault		
Three-Phase Fault (mask) (link)		
Implements a fault (short-circuit) between any phase and the ground. When the external switching time mode is selected, a Simulink logical signal is used to control the fault operation.		
Parameters		
Initial status: 0		
Fault between:		
✓ Phase A ✓ Phase B ✓ Phase C Ground		
Switching times (s): [1/50 30/50]		
Fault resistance Ron (Ohm):		
0.000001		
Ground resistance Rg (Ohm):		
0.001		
Snubber resistance Rs (Ohm):		
1e6		
Snubber capacitance Cs (F):		
inf		
Measurements None		
<u>OK</u> <u>Cancel Help</u> <u>Apply</u>		

Рис. 2.33

В окне параметров блока **Three-Phase Fault** вносим изменения согласно рис. 2.33. Поскольку моделируем трехфазное короткое замыкание, то флажками необходимо отметить три фазы, если флажками отметить фазу **A** и землю (**Ground**), то можно рассчитать однофазное короткое замыкание, и т.д. Таким образом, этот блок позволяет создавать различные короткие замыкания в моделях. Время замыкания и размыкания задается в данном случае в виде периодов.

Block Parameters: 1 W		
Three-Phase Series RLC Load (mask) (link)		
Implements a three-phase series RLC load.		
Parameters Load Flow		
Configuration Y (grounded)		
Nominal phase-to-phase voltage Vn (Vrms)		
400		
Nominal frequency fn (Hz):		
50		
Active power P (W):		
1		
Inductive reactive power QL (positive var):		
0		
Capacitive reactive power Qc (negative var):		
0		
Measurements None		
<u>QK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply		

Рис. 2.34

Имеется возможность управления этим процессом в помощь внешнего источника сигнала (**Externa**l). Значения демпфирующих резистора и конденсатора по умолчанию можно оставить.

Блок **Three-Phase Series RLC Load** носит вспомогательный характер (Рис. 2.34). При его отсутствии модель работает некорректно, а уменьшение мощности менее 1 *Вт* приводит к значительному росту времени расчета.

Для получения сигналов от блоков **Bus_1** и **Bus_2** открываем окно параметров блока **From** (*принимать от*), в позиции **Goto tag:** (передаваемый тег, метка) заносим **Vabc_B_1**. Изменяем его название на **From Bus_1_V**. Копируем этот блок. Изменяем в окне параметров **Vabc_B_1** на **Iabc_B_1**. Его название изменяем на **From Bus_1_I**. После этого каждый из блоков копируем и заменяем в окне параметров и в их названии цифру **1** на **2**.

Рис. 2.35

Полученные четыре блока организуют "беспроводную" связь с соответствующими блоками измерения трехфазных напряжений и токов **Bus_1** и **Bus_2** (Рис. 2.35). В дальнейшем эти данные необходимо визуализовать. Для этого воспользуемся блоками **Scope B1** и **Scope B2**, на которые выведем кривые тока и напряжений с соответствующих шин **Bus_1** и **Bus_2**. Следует отметить, что достоинства "беспроводной" связи возрастают по мере усложнения модели и роста числа измеряемых величин.

Каждый переходной режим обычно завершается установившимся режимом, наступление которого легко отследить по осциллографам. В этом режиме интерес представляют действующие значения синусоидальных напряжений и токов, а также соответствующие мощности на шинах трансформатора. Для получения действующих значений синусоидальных напряжений и токов воспользуемся блоком **RMS**, в окно параметров которого введем частоту **50** *Гц*. Скопируем этот блок. Изменим названия блоков на **RMS_Vabc** и **RMS_Iabc**. Блоки дисплеев обозначим как **B1: Vabc1, B1: Iabc1** и **B1: S, P, Q 1**. После этого последовательно соединим блоки **Vabc_B_1**, **RMS_Vabc** и **B1: Vabc1**, связанные с измерением напряжения. Аналогичным образом соединим блоки, связанные с выводом трехфазных токов (Рис. 2.35).

Для измерения активной и реактивной мощностей воспользуемся блоком **Power (3ph, Instantaneous)**. Используя эти мощности, определим полную мощность как модуль комплексного числа: |S| = abs(P + jQ) с помощью блоков **Real-Imag to Complex** и **Abs**. К дисплею **B1: S, P, Q 1** подводим значения мощностей. Следует отметить, что такой подход уже использовался в *примере 2.6*, но только для однофазной цепи.

ис. 2.36

По мере усложнения основной модели возникает необходимость в объединении простых блоков модели в подсистему (**Subsystem**), что позволяет разбить основную модель на несколько подсистем, которая в свою очередь может включать свои подсистемы и т.д.

Такая подсистема **B2:** V, I, S, P, Q используется для измерения напряжений, токов и мощностей на второй шине. К этой подсистеме подаются мгновенные значения трехфазных напряжений и токов, а на выходе получаем их действующие значения и мощности. Таким образом, эта подсистема выполняет функции пяти блоков, которые используются при измерении на первой шине.

Рис. 2.37

Для создания подсистемы достаточно выполнить следующие простые действия:

- Выделить линии входа, выхода и блоки основной модели, которые необходимо поместить в подсистему. Для этого нажимаем левую кнопку мыши и перемещаем её, выделяя необходимые блоки и линии. Для "прицельного" выделения удерживаем клавишу Shift, поочередно наводим курсор на требуемый блок или линию и щелкаем левой кнопкой мыши;
- После этого нажимаем правую кнопку мыши. В выпадающем списке переходим на Create Subsystem from Selection (создать подсистему из выбранного) и создаем подсистему (рис. 2.36). При желании для этой цели можно воспользоваться и клавиатурой, нажав на Ctrl+G.

После незначительной редакторской правки модель с подсистемами принимает более изящный вид (рис. 2.37). В принципе можно оставить только осциллографы и дисплеи, а остальное "спрятать" в подсистему.

Следует отметить, что одним из достоинств трехфазной модели, по сравнению с однофазной, является то, что с её помощью можно рассчитывать как двухфазные короткие замыкания (рис. 2.38), так и однофазные короткие замыкания, в частности, при соединении D/Yn-11 (рис. 2.39).

Рис. 2.38

Рис. 2.39

Модель позволяет исследовать влияние нагрузки на цеховой трансформатор, в том числе подключение компенсирующих устройств и асинхронных двигателей.

Последние являются основными потребителями электроэнергии в цеховых сетях промышленных предприятий. В связи с этим рассмотрим один из блоков асинхронной машины, представленный в разделе Machines библиотеки SimPowerSystems Specialized Technology.

2.3. Моделирование асинхронного двигателя с короткозамкнутым ротором

Для моделирования асинхронной машины (Рис. 2.40) воспользуемся следующими блоками: (*nodpaзden Electrical Sources*) **Three-Phase Source**; (*Measurements*) **Three-Phase V-I Measurement**; (*Elements*) **Three-Phase Breaker**; (*Machines*) **Asynchronous Machine SI Units**; (*Simulink*) **Step**, и параметрами из Примера 1.7. Сохраним модель в файле **example_2_8**.

В окне задания параметров трехфазного источника (**Three-Phase Source**) введем значения напряжения 380 *B*, частоты 50 *Гц*. Сопротивление и индуктивность источника примем равными нулю. Соединение обмоток источника – Yn. Базисное напряжение – 380 *B*.

Рис. 2.40

В окне параметров выключателя **Three-Phase Breaker** время срабатывания задано равное нулю. Остальные параметры – по умолчанию.

Первая вкладка **Configuration** окна параметров блоком **Asynchronous Machine SI Units** (Асинхронная машина с параметрами в единицах СИ) представлена на рис. 2.41.

На ней в выпадающих списках указаны:

• Preset model: (установленные модели). В выпадающем списке можно выбрать асинхронный двигатель для загрузки его параметров;

🚹 Block Parameter	s: Asynchronous Machine SI Units. 110kW, p=2		
Asynchronous Machine (mask) (link)			
Implements a three-phase asynchronous machine (wound rotor, squirrel cage or double squirrel cage) modeled in a selectable dq reference frame (rotor, stator, or synchronous). Stator and rotor windings are connected in wye to an internal neutral point.			
Configuration	Parameters Advanced Load Flow		
Preset model:	=		
No	▼		
Mechanical input:			
Torque Tm 🔹			
Rotor type:			
Squirrel-cage			
Reference frame	:		
Stationary			
Measurement output			
Use signal names to identify bus labels			
	OK Cancel Help Apply		

Рис. 2.41

- Mechanical input: (*механический вход*). В зависимости от выбора на механический вход можно подать **Torque Tm** (*момент*), **Speed w** (скорость) или создать порт механического вращения, для взаимодействия с механическим валом библиотеки **Simscape**;
- **Rotor type:** (тип ротора). В выпадающем списке можно выбрать тип ротора: фазный, "беличья клетка" (короткозамкнутый ротор) или ротор с двойной "беличьей клеткой";
- **Reference frame.** Система координат, которая принимается в математической модели машины: неподвижная относительно ротора; неподвижная относительно статора, вращающаяся синхронно с полем.

Во вкладке **Parameters** (рис. 2.42) представлены окна, в которые необходимо ввести соответствующие параметры:

1. Nominal power, voltage (line-line), and frequency [Pn(VA), Vn(Vrms), fn(Hz)] – номинальная активная мощность двигателя, линейное напряжение и частота.

Block Parameters: Asynchronous Machine SI Units. 110kW, p=2			
Asynchronous Machine (mask) (link)			
Implements a three-phase asynchronous machine (wound rotor, squirrel cage or double squirrel cage) modeled in a selectable dq reference frame (rotor, stator, or synchronous). Stator and rotor windings are connected in wye to an internal neutral point.			
Configuration Parameters Advanced Load Flow			
Nominal power, voltage (line-line), and frequency [Pn(VA),Vn(Vrms),fn(Hz)]:			
[1.1e+05 380 50]			
Stator resistance and inductance[Rs(ohm) Lls(H)]:			
[0.02155 0.000226]			
Rotor resistance and inductance [Rr'(ohm) Llr'(H)]:			
[0.01231 0.000226]			
Mutual inductance Lm (H):			
0.01038			
Inertia, friction factor, pole pairs [J(kg.m^2) F(N.m.s) p()]:			
[2.3 0.05421 2]			
Initial conditions			
[100000]			
Simulate saturation Plot			
[i(Arms) ; v(VLL rms)]: 3.1917;230, 322, 414, 460, 506, 552, 598, 644, 690]			
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply			

Рис. 2.42

Следует отметить, что в отечественной литературе под размерностью **VA** подразумевают полную, а не активную мощность.

- 2. Stator resistance and inductance [Rs(ohm) Lls(H)]: активное сопротивление и индуктивность рассеяния обмотки статора.
- 3. Rotor resistance and inductance [**Rr'(ohm)** Llr'(**H**)]: приведенные к обмотке статора активное сопротивление и индуктивность рассеяния обмотки ротора.

- 4. Mutual inductance Lm (H): взаимная индуктивность обмоток, расположенных на статоре и роторе.
- 5. Inertia, friction factor, pole pairs [J(kg.m^2) F(N.m.s) p()]: момент инерции, коэффициент трения, число пар полюсов.
- 6. Initial conditions начальные условия переменных (скольжение, электрический угол, амплитуды токов трех фаз статора, соответствующие фазы этих токов).
- 7. Simulate saturation моделирование насыщения.
- 8. Plot построение кривой намагничивания. Во вкладке Advanced (модифицированный) предложена дискретная модель (Discrete solver model) и возможность выбора соответствующего метода расчета.

В окна блока Step M_nom заносим следующие значения: Step time: 1; Initial value: 0; Final value: 706.4. Остальные – по умолчанию.

Результаты моделирования переходного процесса при пуске и набросе номинальной нагрузки представлены на рис. 2.43. Они совпали с результатами, которые были получены в *Примере 1.7* (рис. 1.18).

Рис. 2.42

Рис. 2.43

На рис. 2.43 представлена динамическая механическая характеристика асинхронного двигателя, выведенная на графопостроитель (**XY Graph**). Предварительно его оси необходимо задать в окне параметров блока, оценив максимальные и минимальные значения по рис. 2.42.

Процесс изменения токов в фазах обмотки статора представлен на рис. 2.44. По этим показаниям можно оценить и кратность пускового тока $(k = I_{max} / I_{max} \approx 6.95).$

2.4. Моделирование трансформаторных подстанций 10/0,4 кВ

Трансформаторные подстанции являются основным звеном системы электроснабжения предприятий. В связи с этим моделирование переходных процессов, протекающих в этих подстанциях, является важной задачей. Результаты моделирования позволят правильно выбрать оборудование, оценить влияние различных переходных процессов на качество электроснабжения, выбрать компенсирующие устройства и т.д.

Рис. 2.44

2.5.1. Однотрансформаторная подстанция

В качестве примера рассмотрим моделирование переходных процессов в однотрансформаторной подстанции.

Пример 2.9.

Рассчитать переходные процессы при коротких замыканиях, набросе и сбросе нагрузки, подключении асинхронного двигателя, трехфазном коротком замыкании в однотрансформаторной подстанции. Модель цеха показана на рис. 2.44.

Решение

Пусть параметры подстанции имеют следующие значения:

- 1) Трехфазный источник напряжения: первичное линейное напряжение 10 кВ; частота напряжения 50 Ги; соединение фаз обмотки источника Yn.
- 2) Кабельная линия L_1 (блок Three-Phase Series RLC Branch): активное сопротивление -0,2 OM; индуктивность $-2,48E-5 \Gamma H$.
- 3) Параметры данного трансформатора аналогичны параметрам трансформатора из *Примера 2.7 (Рис. 2.32, стр. 108)*.

Рис. 2.44

- 4) Блоки **B2**, **B3**, **B4**, **B5** это блоки измерения трехфазных напряжений и токов (Three-Phase V-I Measurement).
- 5) Выключатель **CB2** (блок **Three-Phase Breaker**): активное сопротивление 0,00014 *Ом*; время отключения (**Switching times** (s):)– [10.5], т.е. при данном времени расчета [125/50] этот выключатель будет находиться в замкнутом состоянии, время отключения (**Switching times** (s):)– [10.5].
- 6) Выключатель **СВ3**: активное сопротивление 0,00041 *Ом*; время отключения [10.5].
- 7) Кабельная линия **L_3**: активное сопротивление 0,0032 *Ом*; индуктивность 1,8Е-6 *Гн*.
- 8) Выключатель **CB5**: активное сопротивление 0,00041 *Ом*; время включения и отключения [5/50 101/50], т.е. через пять периодов нагрузка по пункту 9 подключается к трансформатору, а через 101 период отключается, при этом отключается и ток короткого замыкания, который создается с помощью блока по пункту 10.
- 9) Последовательная трехфазная RLC нагрузка **260 kW 24 kVAr** (блок **Three-Phase Series RLC Load**): активная мощность 260 *кВm*; реактивная мощность индуктивного характера 24 *BAp*.
- 10) Блок **Three-Phase Fault** (Блок трехфазный замыканий): трехфазное короткое замыкание отмечены флажками три фазы; установлено время короткого замыкания [100/50 1010/50]; сопротивление дуги (Fault resistance Ron (Ohm):) 0,001 *Ом*.
- 11) Выключатель **СВ6**: активное сопротивление 0,0011*Ом*, подключает асинхронный двигатель через десять периодов [10/50].
- 12) Параметры асинхронного двигателя совпадают с параметрами двигателя из Примера 2.8 (Рис. 2.42, стр. 118).
- 13) Блок нагрузки **10W** (**Three-Phase Series RLC Load**) необходим для корректной работы модели при отсутствии нагрузки в конце линии.
- 14) Выключатель **СВ4** с активным сопротивлением 0,00025*Ом* подключает активно-индуктивную нагрузку (пункт 15) через семьдесят пять периодов– [75/50].
- 15) Кабельная линия **L_4**: активное сопротивление 0,0016 *Ом*; индуктивность 1.11Е-6 *Гн*.
- 16) Последовательная трехфазная RLC нагрузка **500 kW 270 kVAr** (блок **Three-Phase Series RLC Load**): активная мощность 500 *кВm*; реактивная мощность индуктивного характера 270 *ВАр*.

В данной модели время расчета составляет сто двадцать пять периодов 125/50. Выключатели **СВ2** и **СВ3** во время расчета находятся в

замкнутом состоянии. В модели задана следующая последовательность коммутаций выключателей и блока коротких замыканий:

- 1) пять периодов трансформатор работает на холостом ходу [5/50];
- 2) в момент времени [5/50] выключатель **СВ5** подключает активноиндуктивную нагрузку (блок **260 kW 24 kVAr**);
- 3) через десять периодов [10/50] выключатель **CB6** подключает асинхронный двигатель (Asynchronous Machine SI Units), мощностью 110 *кВm*;
- 4) через пятьдесят периодов [50/50] после разгона двигателя на холостом ходу на него набрасывают номинальную нагрузку (блок **Step. Torque 706.4 (N.m**));
- 5) через семьдесят пять периодов выключатель CB4 подключает ещё одну активно-индуктивную нагрузку (блок 500 kW 270 kVAr);
- 6) через сто периодов [100/50] с помощью блока **Three-Phase Fault** осуществляется трехфазное короткое замыкание;
- 7) через сто один период [101/50] выключатель СВ5 отключает короткое замыкание и нагрузку.

На рис. 2.45 представлены результаты расчета токов при моделировании перечисленных выше семи переходных процессов (с учетом холостого хода).

Рис. 2.45

Рис. 2.46

Рис. 2.48

В связи с тем, что на этом рисунке показаны не только токи нагрузки, но и токи трехфазного короткого замыкания, увидеть особенности переходных процессов при набросе нагрузки можно только изменив масштаб. На рис. 2.46 показана положительная часть синусоидальных кривых токов, которая дает представление о переходных процессах.

Изменение токов в трансформаторе приводит к соответствующим изменениям напряжений (Рис. 2.47). Наибольшее снижение напряжения, если не считать короткое замыкание, наблюдается при пуске асинхронного двигателя.

Следует отметить, что трехфазное короткое замыкание оказывает негативное влияние на асинхронный двигатель. В частности, наблюдаются токи, соизмеримые с пусковыми токами (рис. 2.48).

2.5.1. Двухтрансформаторная подстанция

В системах электроснабжения промышленных предприятий наибольшее распространение получили двухтрансформаторные подстанции. Основным достоинством таких подстанций является

возможность резервирования электроснабжения. В нормальных режимах для уменьшения токов короткого замыкания два трансформатора работают отдельно, т.е. секционный выключатель разомкнут. В случае исчезновения напряжения на шинах потребителя срабатывает система автоматического ввода резерва. Она отключает вводной выключатель секции без напряжения и только потом включает секционный выключатель, т.е. подключает нагрузку к оставшемуся в работе трансформатору.

При восстановлении напряжения схема возвращается в исходное некоторое время трансформаторы работают состояние, при ЭТОМ параллельно. В очередь, включения трансформатора свою для необходимо выполнить ряд условий, а именно: трансформаторы должны одной группе соединения; иметь принадлежать одинаковые коэффициенты трансформации; иметь одинаковые напряжения короткого замыкания.

Таким образом, создание модели для изучения особенностей параллельной работы трансформаторов представляет определенный интерес. Рассмотрим пример, который посвящен изучению параллельной работы трансформаторов при неравенстве коэффициентов трансформации.

Пример 2.10.

При параллельной работе двух трансформаторов найти: уравнительный ток, если вторичные напряжения соответственно равны 400 *В* и 380 *В*; токи в обмотках при номинальной активной нагрузке.

Решение

Для решения поставленных задач соберем модель, которая представлена на рис. 2.49 (силовая часть) и рис. 2.50 (измерительная часть) [11]. Параметры трехфазных источников и трансформаторов подстанции точно такие же, как у источника и трансформатора из Примера 2.9 и Примера 2.7 (Рис. 2.32, стр. 108). Активное сопротивление всех выключателей равно 0,00014 Ом.

Во всех включателях задаем время коммутации равное 15 c. В выключателях CB_1 и CB_2 устанавливаем начальное состояние – closed, а в остальных – open. Время расчета задаем равным 0,024 c. Выбираем решатель ode23tb(stiff/Tr-BDf2), задаем относительную точность 1e-6 и запускаем модель. На рис. 2.50 представлены результаты расчета работы трансформаторов на холостом ходу.

Рис. 2.49

Рис. 2.50

Рис. 2.51

Показания **Display B_1** и **Display B_2** по активной мощности (*предпоследнее окно*) свидетельствуют о хорошей сходимости, поскольку расчетные значения потерь холостого хода трансформаторов соответственно равны **1902** *Bm* и **1901** *Bm*, а паспортное значение – **1900** *Bm*. Согласно данным, показанным на дисплеях **Display B_3** и **Display B_4**, вторичные напряжения трансформаторов отличаются и равны **230.8** и **219.3**.

Следует отметить, что используемые в модели четыре подсистемы для вывода напряжений, токов и мощностей **B1:** V,I,S,P,Q, **B2:** V,I,S,P,Q, **B3:** V,I,S,P,Q, **B4:** V,I,S,P,Q и **B_c:** V,I,S,P,Q имеют в своем составе блоки, представленные на рис. 2.51.

Для определения уравнительных токов переводим выключатели CB_1 и CB_2 в состояние closed, секционный выключатель CB_c в состояние open. Задаем время коммутации последнего [0.025 0.16]. Время срабатывания выключателей CB_3 и CB_4 задаем равным [0.16], а первоначальное состояние open. Время расчета увеличиваем до 0.15 и после запуска модели получаем значения, представленные на рис. 2.52.

Уравнительные токи, протекающие во вторичных обмотках трансформаторов, одинаковы и равны **668.2** *А*. Вторичные напряжения практически равны **225** *B* и **224.9** *B*. Токи в первичных обмотках трансформаторов отличаются, по всей видимости, на величину намагничивающего тока. При этом потери в трансформаторах составили величину **1.135e+5** – **1.041e+5** = **9400** *Bm*, что превышает общие потери трансформаторов на холстом ходу, т.е. **3800** *Bm*.

Рис. 2.53

Для определения токов при параллельной работе трансформаторов и номинальной нагрузке в выключателях **CB_3** и **CB_4** изменяем время коммутации на [0.03]. В результате получаем следующие значения токов: **46,19** A, **33,26** A – токи в первичных обмотках трансформаторов; **1138** A, **891,5** A – токи во вторичных обмотках трансформаторов (рис. 2.53).

Достаточно интересная картина (Scope11) переходных процессов получается при работе трансформаторов на холостом ходу, включении (t = 0.02 c) и отключении (t = 0.06 c) секционного выключателя, при включении (t = 0.08 c) секционного выключателя с последующим

набросом (t = 0.1 c) нагрузки (рис. 2.54). На отрезке от t = 0.02 c до t = 0.06 c видно, что уравнительные токи в трансформаторах равны и находятся в противофазе. При набросе нагрузки (t = 0.1 c) происходит её неравномерное распределение между трансформаторами. Больше нагружается трансформатор с большим вторичным напряжением, т.е. с меньшим коэффициентом трансформации.

Рис. 2.54

Рис. 2.55

В более крупном масштабе, на рис. 2.55 представлен процесс выравнивания напряжений на уровне кривых напряжений. Здесь верхняя часть синусоиды вторичного напряжения первого кривая ЭТО трансформатора, а другая кривая – второго трансформатора. При t = 0.02 cпроисходит включение секционного выключателя И выравнивание напряжений.

Для получения таких кривых задаем время расчета **0.13** *с* и следующие интервалы коммутации выключателей: **СВ_с** – **[0.02 0.06 0.08]; СВ_3** и **СВ_4** – **[0.1]**.

Приведенные в учебном пособии примеры продемонстрировали только небольшую часть тех возможностей, которые предоставляет **MATLAB**. Дальнейшее её изучение позволит существенно сократить время расчета курсовых и дипломных проектов и, шаг за шагом, откроет вам огромные возможности такого замечательного продукта как **MATLAB** и её расширения **Simulink** и **SimPowerSystems**.

Список литературы

1. Курбатов, Е А. *MATLAB 7. Самоучитель.* –М.: : Издательский дом "Вильямс", 2006.

2. **Черных, И В.** *Моделирование электротехнических устройств в MATLAB, SimPowerSystems и Simulink.* –М : ДМК Пресс; Питер, 2008.

3. **Дьяконов, В. П. и Пеньков, А. А.** *MATLAB и Simulink в* электроэнергетике. Справочник. –М : Горячая линия-Телеком, 2009.

4. Беспалов, В. Я. и Котеленец, Н. Ф. Электрические машины. -М : Издательский центр "Академия", 2013.

5. Копылов, И. П. Математическое моделирование электрических машин. – М.: : Высш. шк., 2001.

6. *youtube.com.* [В Интернете] [Цитировано: 21 12 2014 r.] https://www.youtube.com/watch?v=-QtVdcS2Lko&list=PLmu_y3-DV2_mCc5DAlxZnyQ7itvu1RM9H.

7. **Герман-Галкин, С. Г.** *Matlab & Simulink. Проектирование мехатронных систем на ПК. –* СПб. : КОРОНА-Век, 2008.

8. **Дьяконов, В. П.** Simulink 5/6/7: Самоучитель. – М. : ДМК-Пресс, 2008.

9. SimPowerSystems . *MATLAB.Exponenta*. [В Интернете] [Цитировано: 15 декабрь 2014 г.] http://matlab.exponenta.ru/simpower/book1/index.php.

10. Simscape. *MathWorks Центр компетенций*. [В Интернете] MathWorks . [Цитировано: 28 декабрь 2014 г.] http://matlab.ru/products/simscape.

11. **Джендубаев, Эдуард Абрек-Заурович.** Разработка модели цеховой двухтрансформаторной подстации в среде MATLAB и её расширениях Simulink и SimPowerSystems. *Известия Северо-Кавказской госудраственной гуманитарно-технологической академии.* РИЦ СевКавГГТА, 2014 г., № 1.

ДЖЕНДУБАЕВ Абрек-Заур Рауфович, АЛИЕВ Исмаил Ибрагимович

MATLAB, Simulink и SimPowerSystems в электроэнергетике

Учебное пособие для студентов, обучающихся по направлению подготовки 140400.62 "Электроэнергетика и электротехника", профиль "Электроснабжение"

Печатается в редакции авторов

Корректор Редактор

Сдано в набор Формат 60х84/16 Бумага офсетная. Печать офсетная. Усл. печ. л. Заказ № Тираж

Оригинал-макет подготовлен в Библиотечно-издательском

центре СевКавГГТА

369000, г. Черкесск, ул. Ставропольская, 36