
Выпрямитель инверторный для дуговой сварки плавящимся электродом

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ

EAC

CEPTHONICAT CONTRETETRINE

№ EAЭC RU C-RU.HB29.B.00743/20

Серия RU

№ 0286914

ОРГАН ПО СЕРТИФИКАЦИИ Орган по сертификации продукции Общества с ограниченной ответственностью "Сфера" Место нахождения: 123290, Россия, город Москва, улица Магистральная 2-я, дом 1/3, строение 1, этаж 2, комната 29 Адрес места осуществления деятельности: 123290, Россия, город Москва, улица Магистральная 2-я, дом 1/3, строение 1, этаж 2, комнаты 33, 34, 35

Аттестат аккредитации № RA.RU.11HB29 срок действия с 24.07.2019

Телефон: + 7(905)714-65-97 Адрес электронной почты: cops.sphera@gmail.com

ЗАЯВИТЕЛЬ АКЦИОНЕРНОЕ ОБЩЕСТВО "ЭЛЕКТРО ИНТЕЛ"

Место нахождения: 603057, Россия, область Нижегородская, город Нижний Новгород, улица Нартова, Дом 2, Помещение П14, основной государственный регистрационный номер 1055248148240

Телефон; +78007005798 Адрес электронной почты: mail@ei-neon.ru

ИЗГОТОВИТЕЛЬ АКЦИОНЕРНОЕ ОБЩЕСТВО "ЭЛЕКТРО ИНТЕЛ"

Место нахождения: 603057, Россия, область Нижегородская, город Нижний Новгород, улица Нартова, Дом 2, Помещение III4 Адрес места осуществления деятельности по изготовлению продукции: 603057, Россия, Нижегородская область, город Нижний Новгород, уница Нартова, дом 2

ПРОДУКЦИЯ Оборудование дуговой сварки: выпрямители инверторные, тип «ВД».

Продукция изготовлена в соответствии с ТУ 3441-009-78723165-2015 "Выпрямители инверторные для дуговой сварки производства АО "Электро Интел"

Серийный выпуск

КОД ТН ВЭД ЕАЭС 8515310000

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ

ТР TC 004/2011 "О безопасности низковольтного оборудования" ТР TC 020/2011 "Электромагнитная совместимость технических средств"

СЕРТИФИКАТ СООТВЕТСТВИЯ ВЫДАН НА ОСНОВАНИИ протокола испытаний № 675 от 25.09.2020 года Испытательного Центра Товарищества с отраниченной ответственностью Центр Сертификации Единый Стандарт (ЦС ЕС) , аттествт аккеритации К.У. Т0.2.2134

Акта о результатах анализа состояния производства № С-20200921-004 от 21.09.2020года

Копия эксплуатационных документов, Перечень стандартов, учакванных в ТР ТС 004/2011 "О безопасности пизковольтного оборудования", ТР ТС 020/2011 "Электромагнитная совместимость технических средств", требованиям которых должна соответствовать продукция

Схема сертификации: 1с

АОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ (согласно приложению бланк №0789772). Условия хранения изделий в части воздействия климатических факторов внешней ереды по ГОСТ 15150-69. Назначенный срок годиости и срок хранения указаны в прилагаемой к продукции эксплуатационной дохументации.

СРОК ДЕЙСТВИЯ С ВКЛЮЧИТЕЛЬНО 29 09 2020

Руководитель (уполномоченное лицо) органа по сертификации

Эксперт (эксперт-аудитор) (эксперты (эксперты-аудиторы))

Корниенкова Елена Алексеевна

Абдрахманов Андрей Тихомирович (Ф.И.О.)

СОДЕРЖАНИЕ

1	НАЗНАЧЕНИЕ	4
2	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
3	МАРКИРОВКА И УПАКОВКА	5
4	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	6
5	ТРАНСПОРТИРОВАНИЕ, ПРАВИЛА ХРАНЕНИЯ И УТИЛИЗАЦИЯ	6
6	КОМПЛЕКТНОСТЬ	7
7	УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	7
8	ФУНКЦИОНИРОВАНИЕ И НАСТРОЙКА ПАРАМЕТРОВ	1
9	ПОДГОТОВКА И ПОРЯДОК РАБОТЫ	15
10	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	19
11	ИНФОРМАЦИЯ О ПРЕЛПРИЯТИИ-ИЗГОТОВИТЕЛЕ	10

Перед началом эксплуатации полуавтомата для дуговой сварки плавящимся электродом **NEON ВД-201ПДГ** (далее полуавтомат) необходимо ознакомиться с данным техническим описанием и требованиями по технике безопасности при проведении сварочных работ. Полуавтомат **NEON ВД-201ПДГ** соответствует **ТУ 3441-009-78723165-2015** и требованиям **ГОСТ 18130-79, ГОСТ Р МЭК 60974-1-2023.**

1 НАЗНАЧЕНИЕ

- Полуавтомат предназначен для следующих видов дуговой сварки: сварка и наплавка покрытым электродом РД, РДН; механизированная дуговая сварка и наплавка плавящимся электродом стационарной дугой в активных и инертных газах и смесях МП, МПН, МПС, МПСН; ручная аргонодуговая сварка и наплавка неплавящимся электродом РАД, РАДН.
 Полуавтомат предназначен для эксплуатации в помещениях с вентиляцией и на открытом воздухе под навесом при отсутствии атмосферных осадков и температуре от —20 °C до +40 °C.
- Полуавтомат обеспечивает устойчивую работу при питании, как от сети промышленной частоты, так от и автономной электростанции, мощность которой больше в 1,5 раза мощности полуавтомата (не менее **10 кВт**).
- Полуавтомат обладает превосходными сварочными свойствами, обеспечивает стабильный ток сварочной дуги, плавную регулировку, не создает отрицательных воздействий на сеть при сварке.

2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- По требованиям защиты от поражений электрическим током полуавтомат соответствует
 классу 01 (заземление металлических нетоковедущих частей обеспечивается присоединением
 специального провода к контуру заземления или непосредственным механическим контактом
 электрооборудования и контура заземления. Место присоединения контура заземления
 обозначается символом ⊕).
- По безопасности конструкция полуавтомата соответствует степени защиты **IP21** (защита от проникновения твердых предметов диаметром ≥12,5 мм и вертикального каплепадения при неработающем выпрямителе), а зажимов сварочной цепи **IP11** (защита от проникновения твердых предметов диаметром ≥50 мм и вертикального каплепадения).
- Все электросварочные работы должны проводиться в соответствии с ГОСТ 12.3.003-86 «ССБТ Работы электросварочные. Требования безопасности».
- При работе с полуавтоматом необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей» (ПТЭЭП, ПТБ).
- Выходной зажим полуавтомата, идущий к свариваемому изделию (обратный провод), должен быть заземлен.
- Запрещается работа полуавтомата со снятой крышкой корпуса.
- Запрещается работа полуавтомата с поврежденным вентилятором или закрытыми отверстиями для охлаждения.
- Запрещается применять провода с поврежденной электрической изоляцией, наращивать сварочные провода, перемещать полуавтомат, не отключив его от сети.
- Запрещается использование полуавтомата не по назначению.

- Запрещается работа полуавтомата при наличии внешних осадков без дополнительной защиты.
- Запрещается дуговая сварка сосудов, находящихся под давлением.
- Запрещается производить ремонтные работы полуавтомата под напряжением.
- При проведении сварки необходимо соблюдать меры противопожарной безопасности: временные места проведения сварочных работ должны быть очищены от горючих материалов и легковоспламеняющихся жидкостей; место проведения сварочных работ необходимо обеспечить средствами пожаротушения; после окончания сварочных работ необходимо тщательно осмотреть место их проведения для исключения возможности возникновения пожара.
- При сварке необходима защита: глаз и открытых участков тела от электрической дуги; от разбрызгивания расплавного металла и шлака; от выделяющихся при сварке газов; от пожара.
- Обязательно применение сварочной маски, спецодежды и обуви.
- Стационарные посты сварки должны быть оборудованы местными отсосами.
- Размещение постов сварки с применением защитного газа должно исключать возможность утечки и проникновения защитного газа в смежные и расположенные ниже помещения.
- При ручной сварке штучными электродами следует использовать переносные малогабаритные воздухоприемники с пневматическими, магнитными и другими держателями.
- Перед сваркой сосудов, в которых находились горючие жидкости и вредные вещества, должна быть произведена их очистка, промывка, просушка, проветривание и проверка отсутствия опасной концентрации вредных веществ.
- При сварке материалов, обладающих высокой отражающей способностью (сплавов на основе алюминия), для защиты электросварщиков и работающих рядом от отраженного оптического излучения следует экранировать сварочную дугу встроенными или переносными экранами и по возможности экранировать поверхности свариваемых изделий.
- Напряжение сварочной цепи является опасным для человека, поэтому не допускается прикосновение к токоведущим частям без средств защиты.

3 МАРКИРОВКА И УПАКОВКА

Каждый полуавтомат упаковывается в картонную коробку. На корпус полуавтомата прикрепляется этикетка со следующими обозначениями: наименование или знак изготовителя, наименование и тип прибора, технические характеристики, заводской номер, дата выпуска.

4 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

	МП	РД			
Продолжит	ельность нагрузки				
ПН=100% / ПН=80% при сварочном токе*	180 A / 200 A	180 A / 200 A			
Ограничение ПН (защита от перегрева)		есть			
Пита	ающая сеть				
Напряжение / Количество фаз / Частота	230 B	±10% / 1L+N / 50-	–60 Гц		
Потребляемый ток / мощность	≤27A/≤6,2 кВт	≤20A/≤4,6ĸBT	≤31A /≤7,2ĸBτ		
КПД / Коэфф. мощности (при макс. токе)		0,89 / 0,87			
Устройство защиты	автом	атический выклю	чатель		
Свар	очная цепь				
Напряжение холостого хода	≤ 70 B				
Мин. / Макс. сварочный ток	20 / 200 A	5 / 200 A	20 / 200 A		
Диапазон рабочего напряжения	1524 B	10,218 B	20,828 B		
Скорость подачи проволоки	120 м/мин	_	_		
Диаметр сварочной проволоки / электрода	0,81,2 мм	1,64,0 мм	1,65 мм		
Техниче	ские параметры				
Диапазон рабочих температур	− 20 °C+ 40 °C				
Класс защиты / Степень защиты		01 / IP21			
Макс. давление газовой магистрали ≤ 6 Бар					
Конструкти	ивные параметры				
Катушка с проволокой 200 мм / 5 кг					
Габаритные размеры / упаковки (ВхШхГ) 470x225x535 мм / 510x250x560 мм					
Масса нетто / брутто	≤19 кг / ≤25 кг				

^{*-} при температуре окружающего воздуха +40 °C.

5 ТРАНСПОРТИРОВАНИЕ, ПРАВИЛА ХРАНЕНИЯ И УТИЛИЗАЦИЯ

Транспортирование упакованных полуавтоматов должно производиться в закрытых транспортных средствах (железнодорожных вагонах, а также автомобильным транспортом с защитой от дождя и снега) при температуре окружающего воздуха от $-50\,^{\circ}$ С до $+40\,^{\circ}$ С. При транспортировке и погрузке **ВД-201ПДГ** необходимо оберегать от ударов и воздействия влаги. На складах приборы должны храниться в транспортной таре в положении, указанном на таре. Хранение в индивидуальной упаковке осуществляется на стеллажах или деревянном сухом полу. Помещение для хранения должно быть сухим, вентилируемым, с влажностью воздуха существенно меньше, чем на открытом воздухе, при температуре от $-50\,^{\circ}$ С до $+40\,^{\circ}$ С.

Полуавтомат не представляет опасности для жизни, здоровья людей и окружающей среды. После окончания срока эксплуатации полуавтомат подлежит утилизации по технологии, принятой на предприятии, эксплуатирующем данное изделие.

6 КОМПЛЕКТНОСТЬ

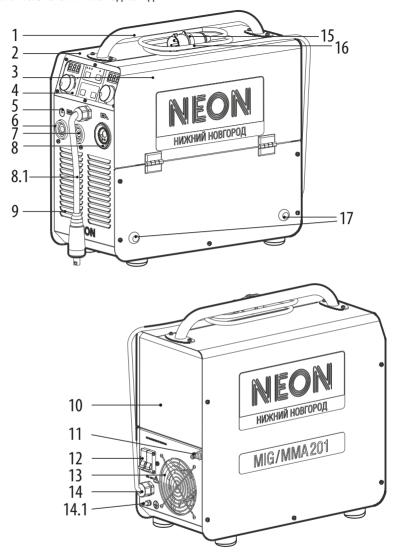
Полуавтомат «NEON» ВД-201ПДГ	1 шт.
Руководство по эксплуатации	1 шт.
Упаковочная тара	1 шт.
Подающий ролик для проволоки 0,8-1,0 мм	1 шт.
Подающий ролик для проволоки 1,2-1,6 мм	1 шт.
Кабель сварочный с зажимом для заземления 2,5 м	1 шт.
Сварочная горелка	*
Гнездо быстроразъёмное газовой магистрали	1 шт.
Вилка токового разъёма TSB 35-50	1 шт.

^{* -} опиионально.

Для сварки в режиме РАД необходима горелка с возможностью подключения к «евроразъему».

Примечание: производитель оставляет за собой право изменять тип и марку комплектующих, не изменяя комплектность полуавтомата, вносить изменения в конструкцию изделий для улучшения их технологических и эксплуатационных параметров без предварительного уведомления потребителя.

7 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ


7.1 ПРИНЦИП РАБОТЫ

ВД-201ПДГ представляет собой малогабаритную переносную установку для ручной и механизированной электродуговой сварки постоянным током. Небольшие габариты и масса достигаются за счет преобразования электрической энергии на высокой частоте с помощью квазирезонансного инвертора. Регулирование выходных параметров обеспечивает фазовый способ управления инвертором, позволяющий значительно расширить диапазон регулирования сварочного тока. Применение IGBT технологии в квазирезонансном инверторе позволяет увеличить КПД, продолжительность нагрузки и повысить надежность полуавтомата.

7.2 УСТРОЙСТВО ПОЛУАВТОМАТА

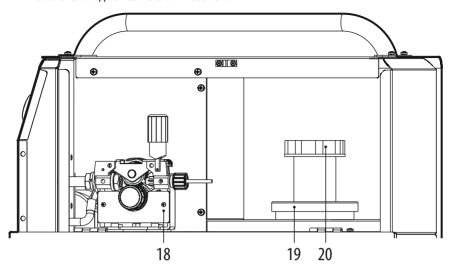

Полуавтомат (рисунок 7.1) выполнен в компактном металлическом корпусе. Для удобства перемещения он снабжен ручкой 1, расположенной на крышке 2. На лицевой панели 5 находятся: панель управления (4); токовые разъемы для подсоединения сварочных кабелей с соответствующей маркировкой «—» 6 и «+» 7; евроразъём 8 для подсоединения сварочной горелки; вывод смены полярности 8.1; жалюзи для выхода охлаждающего воздуха 9. На задней панели 10 расположены: штуцер быстроразъёмный 11 для подачи защитного газа; сетевой автоматический выключатель 12; вентилятор принудительного охлаждения 13 с защитной решеткой; ввод сетевого кабеля 14, зажим подключения проводника заземления 14.1 по классу защиты 01. К питающей сети полуавтомат подключают с помощью сетевой вилки 15 и сетевого провода 16. За открывающейся вниз крышкой 3 находится блок подачи сварочной проволоки. Источник сварочного тока для полуавтомата представляет собой моноблок, закрепленный на основании корпуса. Этим достигается удобство обслуживания и ремонта, а также повышенная надежность устройства при различных внешних ударных воздействиях.

Рис. 7.1 ПОЛУАВТОМАТ NEON ВД-201ПДГ

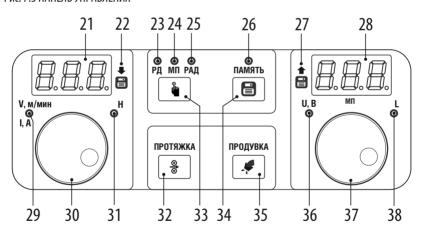

- 1 Ручка; 2 Крышка корпуса; 3 Крышка отсека с проволокой; 4 Панель управления;
- 5 Лицевая панель; 6 Токовый разъем «—»; 7 Токовый разъем «+»; 8 Евроразъем;
- 8.1 Вывод смены полярности; 9 Жалюзи охлаждения; 10 Задняя панель; 11 Штуцер быстроразъёмный газовой магистрали; 12 Автоматический выключатель; 13 Вентилятор;
- 14 Ввод сетевого кабеля; 14.1 Зажим заземления; 15 Сетевая вилка; 16 Сетевой провод;
- 17 Демпфер крышки отсека проволоки.

Рис. 7.2 ОТСЕК ПОДАЧИ СВАРОЧНОЙ ПРОВОЛОКИ

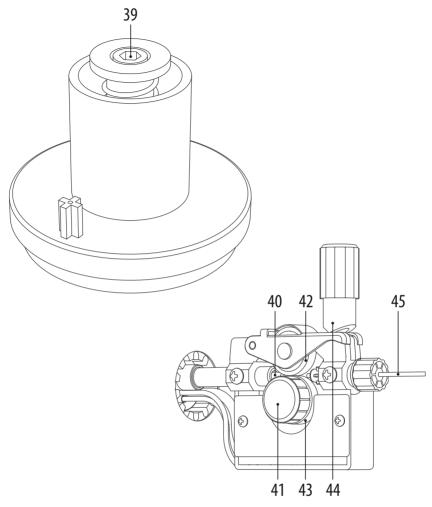

18— Механизм подачи проволоки; 19 — Крепление для катушки с проволокой; 20 — Фиксирующая гайка.

Рис. 7.3 ПАНЕЛЬ УПРАВЛЕНИЯ

21, 28 — Цифровые индикаторы; 22 — Пиктограмма сохранения в память; 23 — Индикатор «РД сварка»; 24 — Индикатор «МП сварка»; 25 — Индикатор «РАД сварка»; 26 — Индикатор работы с памятью; 27 — Пиктограмма загрузки из памяти; 29 — Индикатор уставки скорости/тока сварки; 30, 37 — Регуляторы; 31 — Индикатор меню Настройка; 32 — Кнопка Протяжка; 33 — Кнопка выбора способа сварки; 34 — Кнопка Память; 35 — Кнопка Продувка; 36 — Индикатор уставки напряжения; 38 — Индикатор уставки индуктивности.

Рис. 7.4 КРЕПЛЕНИЕ КАТУШКИ И МЕХАНИЗМА ПОДАЧИ СВАРОЧНОЙ ПРОВОЛОКИ

39 — Болт регулирования тормозного усилия; 40 — Направляющая трубка; 41 — Фиксатор подающего ролика; 42 — Прижимной ролик; 43 — Подающий ролик; 44 — Фиксатор прижимного ролика; 45 — Входной ниппель.

Внутри блока подачи сварочной проволоки (рисунок **7.2**) находятся: механизм подачи сварочной проволоки **18**; крепление для катушки с проволокой **19** и фиксирующая гайка **20**. Крепление для катушки с проволокой снабжено тормозом, препятствующим вращению катушки по инерции. Регулировку тормозного усилия осуществляют болтом **39** (рисунок **7.4**) таким образом, чтобы после отпускания кнопки горелки катушка с проволокой сразу же прекратила вращение.

Механизм подачи сварочной проволоки (рисунок **7.4**) состоит из: прижимного ролика **42**, прижимающего сварочную проволоку к подающему ролику; подающего ролика **43**, жестко связанного с редуктором подающего механизма (на сменной части ролика нанесены направляющие канавки для проволоки различного диаметра); фиксатора подающего ролика **41**; прижимного рычага **44**, осуществляющего регулирование прижимного усилия посредством вращения рифлёной ручки; направляющей трубки **40**, предотвращающей сминание сварочной проволоки; входного ниппеля **45**, направляющего сварочную проволоку от катушки. На панели управления (рисунок **7.3**) расположены: регуляторы совмещенные с кнопками для задания уставки тока, напряжения, скорости подачи, параметров сварки **30**, **37**, кнопки выбора способа сварки **33**, протяжки **32**, продувки **35**, работы с памятью **34**, индикаторы для отображения уставки, измеряемого значения или пунктов настройки **21**, **28**.

8 ФУНКЦИОНИРОВАНИЕ И НАСТРОЙКА ПАРАМЕТРОВ

8.1 ОХЛАЖДЕНИЕ И ТЕРМОЗАЩИТА

В полуавтомате реализована защита от перегрева (термозащита). При срабатывании термозащиты сварочный ток снижается до нуля. На индикаторы **21, 28** выводится мигающая надпись **«-t-»**. При снижении температуры до установленного значения, инвертор включается.

В режиме механизированной дуговой сварки и аргоно-дуговой сварки вентилятор начинает вращаться при нажатой кнопке сварочной горелки и прекращает вращаться после охлаждения полуавтомата.

В режиме ручной дуговой сварки вентилятор начинает вращаться при возникновении тока сварки и прекращает вращаться после охлаждения полуавтомата.

Автоматическое управление вентилятором позволяет значительно снизить накопление электропроводной пыли и грязи внутри корпуса полуавтомата, повышая общую надежность.

8.2 ВЫБОР СПОСОБА СВАРКИ

Для переключения способа сварки необходимо кратковременно нажать на кнопку **33**. Индикаторы **23**, **24**, **25** отображают выбранный способ сварки.

8.3 ПАМЯТЬ

При желании, можно сохранить или считать все настроенные параметры в одной из десяти ячеек памяти для каждого способа сварки. Для этого необходимо нажать на кнопку «ПАМЯТЬ» 34. Загорится светодиод 26, сигнализирующий об активном состоянии режима работы с памятью. Цифровой индикатор 21 отображает номер ячейки для записи, а индикатор 28 — для чтения. Вращением регулятора 30 выбирают ячейку для записи, а вращением регулятора 37 — для чтения. Чтобы осуществить запись или чтение, необходимо нажать на регулятор 30 или 37 соответственно. Светодиод 26 погаснет, все параметры запишутся или считаются согласно выбранным ячейкам. Если необходимость в записи или чтении отпала, следует повторно нажать на кнопку 34, светодиод 26 погаснет.

8.4 НАСТРОЙКА ПАРАМЕТРОВ СВАРКИ

Для настройки параметров сварки необходимо нажать на регулятор **30**, при этом загорится светодиод **31**. Индикатор **21** отображает параметр сварки, а индикатор **28** — его значение. Вращением регулятора **30** выбирают параметр, а вращением регулятора **37** — изменяют его значение. Для выхода из режима настройки параметров необходимо повторно нажать на регулятор **30**. Перечень параметров соответствует выбранному способу сварки.

8.5 НАСТРОЙКА МЕХАНИЗИРОВАННОЙ ДУГОВОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

Регулятором **30** задают скорость подачи сварочной проволоки. Регулятором **37** задают уставку напряжения дуги.

Для настройки индуктивности необходимо нажать на регулятор **37**, при этом загорится светодиод **38**. Вращением регулятора **37** выбирают необходимое значение индуктивности. Меньшее значение повышает стабильность дуги и увеличивает разбрызгивание, большее — наоборот. Параметры механизированной дуговой сварки представлены в таблице **8.1**. Приблизительные параметры для сварки стальной проволокой в газе К18 и C02 выбирают согласно таблице **8.2**, окончательную настройку сварочного процесса осуществляют опытным путем.

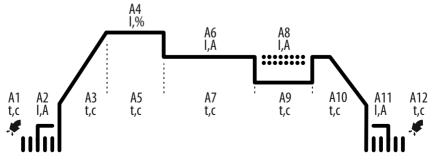
	Функции и их описание	Настройки				
Функция	Описание	Параметр	Описание			
Режим кнопки	Выбор режима управления сварочной горелкой	П01	2T 4T			
Продувка	Подача газа перед началом и после	П02	Длительность «до», 010 с			
продувка	окончания сварки	П03	Длительность «после», 0 40 с			
Сварка	Длительность интервала дуги	П04	Длительность, 0,19,9 с ОFF — для непрерывной сварки			
интерва- лами	Длительность интервала паузы	П05	Длительность, 0,19,9 с ОFF — для сварки заклёпками			

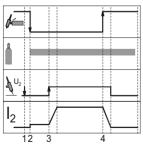
Таблица 8.1 Функции и доступные параметры для сварки МП

8.6 НАСТРОЙКА РУЧНОЙ АРГОНО-ДУГОВОЙ СВАРКИ НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

Регулятором **30** задают значение сварочного тока. Параметры ручной аргоно-дуговой сварки представлены в таблице **8.3**. Диаграмма, поясняющая процесс сварки, представлена на рисунке **8.1**

Рис. 8.1 ДИАГРАММА СВАРОЧНОГО ПРОЦЕССА РАД

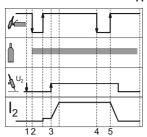



Таблица 8.2 Параметры для сварки стальной проволокой в газе К18 и СО2

	T	K1	8*	C	CO2			
Диаметр проволоки	Толщина металла	Скорость подачи	Напряжение	Скорость подачи	Напряжение			
	0,5	1,5	14,9	1,4	15,8			
	0,7	2,5	15,8	1,7	16,1			
	1	3,8	17,1	2,5	16,7			
	1,5	5,6	18,8	4,9	18,7			
0,8 мм	2	7,2	20,4	6,4	19,9			
	3,5	10,6	23,7	9,2	22,2			
	5	12,5	25,5	11,8	23,6			
	7,5	15,5	29,5	15,9	25,3			
	10	20	32,8	20	27			
	0,5	-	-	-	-			
	0,7	1,4	14,8	1,5	15,8			
	1	2,4	15,9	1,9	16,3			
	1,5	3,5	17,1	3,6	18,6			
1 мм	2	5	18,8	4,3	19,5			
	3,5	6,3	20,2	6,0	21,4			
	5	7,5	21,5	7,3	22,7			
	7,5	9,6	23,9	9,6	24,7			
	10	14,5	32,3	13	27,9			
	0,5	-	-	-	-			
	0,7	-	-	-	_			
	1	1,5	15,5	-	-			
1 2	1,5	2,5	16,8	1,6	16,7			
1,2 мм	2	3,3	17,8	2,4	18,2			
	3,5	5,5	20,7	4,4	22,0			
	5	7,3	23,1	6	24,5			
	7,5	-	-	8,1	27,2			

Таблица 8.3 Функции и доступные параметры для сварки РАД

	Функции и их описание	Настройки				
Функция	Описание	Параметр	Описание			
Продувка до	Подача газа перед началом сварки	A01	Длительность, 099,5 с			
Старт	Нарастание тока сварки от заданного	A02	Ток зажигания дуги, 5200 А			
сварки	значения тока за определённое время	A03	Длительность нарастания, 05 с			
Горячий	Увеличение тока на заданное время	A04	Увеличение тока к уставке, 0100%			
старт	для облегчения зажигания дуги	A05	Длительность, 02 с			
		A06	Ток основного интервала, 5200 А			
Сварка	Периодическое изменение уставки тока сварки в соответствии с	A07	Длит. основного интервала, 0,015 с ОFF — отключить доп. интервал			
импульсами	заданными значениями тока и	A08	Ток дополнительного интевала, А			
	длительности	A09	Длит. дополнительного интервала, с OFF — сварка заклепками			
Заварка	Снижение тока сварки до заданного	A10	Время спада, с			
кратера	значения за определённое время	A11	Ток обрыва дуги, А			
Продувка после	Защитный обдув газом после сварки	A12	Длительность, с			
Режим кнопки	Выбор режима управления сварочной горелкой	A13	2T 4T PY4			


РЕЖИМ ВКЛЮЧЕНИЯ И ОТКЛЮЧЕНИЯ СВАРОЧНОГО ТОКА КНОПКОЙ ГОРЕЛКИ 2-Т С КОНТАКТНЫМ ВОЗБУЖДЕНИЕМ ДУГИ

- 1. Закоротить вольфрамовый электрод на свариваемую деталь.
- 2. Нажать кнопку горелки. Через сварочную цепь потечет ток контактного поджига, устанавливаемый параметром А2. Подается защитный газ. Длительность обдува сварщик регулирует самостоятельно моментом возбуждения дуги.
- 3. После отрыва электрода от заготовки на 2...3 мм дуга зажигается, далее процедура сварки продолжается в соответствии с выбранным режимом работы.

^{4.} Для завершения процесса сварки необходимо отпустить кнопку горелки. Сварочный ток уменьшается до минимального значения. После обрыва дуги производится защитный обдув газом заготовки.

4-Т С КОНТАКТНЫМ ВОЗБУЖДЕНИЕМ ДУГИ

- 1. Закоротить вольфрамовый электрод на свариваемую деталь.
- 2. Нажать и отпустить кнопку горелки. Через сварочную цепь потечет ток контактного поджига, устанавливаемый параметром
- A2. Подается защитный газ. Длительность обдува сварщик регулирует самостоятельно моментом возбуждения дуги.
- 3. После отрыва электрода от заготовки на 2...3 мм дуга зажигается, далее процедура сварки продолжается в соответствии с выбранным режимом работы.
- 4. Для завершения процесса сварки необходимо нажать и отпустить кнопку горелки. При удержании кнопки горелки сварочный ток снижается до тока окончания сварки и продолжается до момента отпускания кнопки горелки. После обрыва дуги производится защитный обдув газом заготовки и аппарат переходит в режиме ожидания.

РУЧНОЙ РЕЖИМ ВОЗБУЖДЕНИЯ ДУГИ

Предназначен для вентильной горелки без кнопки, подключаемой непосредственно к редуктору баллона с защитным газом.

- 1. Открыть вентиль подачи газа на горелке для подачи газа.
- 2. Закоротить вольфрамовый электрод на свариваемую деталь. Через сварочную цепь потечёт ток контакного поджига, устанавливаемый параметром A2.
- 3. После отрыва электрода от заготовки на 2...3 мм дуга зажигается, далее процедура сварки продолжается в соответствии с выбранным режимом работы.
- 4. Для завершения процесса сварки необходимо оборвать сварочную дугу, увеличив дуговой промежуток.
- 5. После обрыва дуги произвести защитный обдув газом заготовки, длительность которого сварщик регулирует самостоятельно. Затем закрыть вентиль подачи газа на горелке.

8.7 НАСТРОЙКА РУЧНОЙ ДУГОВОЙ СВАРКИ ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

Параметры ручной дуговой сварки представлены в таблице **8.5**. Регулятором **30** задают уставку тока дуги.

9 ПОДГОТОВКА И ПОРЯДОК РАБОТЫ

Внимание! Чтобы потребитель имел возможность пользоваться однофазным полуавтоматом от стандартной розетки на 16 A, аппарат оснащается соответствующей вилкой. При сварке током выше 140 A необходимо подключать сетевые провода напрямую к автоматическому выключателю в электрощитке, либо использовать вилку на 32 A. Предварительно следует убедится, что сеть выдержит подключение полуавтомата.

• Перед отправкой потребителю полуавтомат прошел все необходимые проверки и испытания на предприятии-изготовителе. После получения полуавтомата следует его распаковать и проверить на наличие повреждений, вызванных транспортировкой. Если обнаружатся признаки повреждения, необходимо известить об этом продавца.

Таблица 8.5 Функции и доступные параметры для сварки РД

	Функции и их описание	Настройки		
Функция	Описание	Параметр	Описание	
Горячий старт	Увеличение тока на заданное время для облегчения зажигания дуги	P01	Ток горячего старта в % к уставке, 0100%	
ANTISTICK	Препятствует «прилипанию» электрода, позволяет легко отделить его	P02	ON OFF	
Снижение напряжения холостого хода	Снижение напряжения на выходных зажимах инвертора до уровня, позволяющего работать в условиях повышенной опасности поражения электрическим током	P03	12 B 70 B	
Наклон ВАХ	Оптимизация процесса сварки электродами с различными типами покрытий	P04	Наклон ВАХ, 0,41 В/А 0FF — отключено	
Ток короткого замыкания Ток короткого дамыкания Ток короткого счет увеличения силы тока при уменьшении длины дуги		P05	Ток КЗ в % к уставке, 0100 %	

- Перед началом работы произвести технический осмотр, убедиться в отсутствии повреждений и исправности полуавтомата, подготовить рабочее место сварщика.
- Установить полуавтомат в удобное положение для управления. Проконтролировать отсутствие препятствий на входе и выходе охлаждающего воздуха.
- Выполнить заземление корпуса полуавтомата и обратного сварочного провода.
- Автоматический выключатель полуавтомата установить в отключенное положение.

9.1 МЕХАНИЗИРОВАННАЯ ДУГОВАЯ СВАРКА ПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

Внимание! Необходимо осторожно обращаться с газовым баллоном: не ронять, не нагревать, не допускать утечки газа.

- Перед подключением редуктора к газовому баллону необходимо кратковременно открыть
 вентиль для продува загрязнений. Прикрутить редуктор к баллону, обеспечить выходное
 давление не выше 6 Бар. Присоединить газовый шланг к штуцеру редуктора и к штуцеру 11
 полуавтомата на задней панели. Для сварки самозащитной порошковой проволокой (МПС)
 подключение баллона с газом и редуктора не требуется.
- Подключить сварочную горелку к «евроразъёму» **8** на передней панели аппарата.
- В зависимости от требуемой полярности вставить кабельную вилку обратного провода в соответствующий разъем «—» **6** или «+» **7** на передней панели сварочного аппарата и повернуть его по часовой стрелке до упора.
- Во избежание ослабления соединения необходимо повернуть вывод смены полярности против часовой стрелки и вставить кабельную вилку в свободный разъем «—» или «+», затем повернуть по часовой стрелке до упора.
- Установить подающий ролик 43 с канавками, соответствующими диаметру проволоки.
- Установить катушку со сварочной проволокой на крепление 19 и закрепить гайкой 20.
- Продеть сварочную проволоку через входной ниппель **45**, направляющую канавку подающего ролика **43** и направляющую трубку **40**.

- Прижать прижимной ролик фиксатором 44.
- Вставить вилку в розетку. Включить автоматический выключатель полуавтомата.
- Открыть вентиль баллона. Вентилем газового редуктора необходимо отрегулировать расход защитного газа на уровне 8...20 литров в минуту (зависит от тока и диаметра сопла). Продуть газовый шланг и канал горелки, нажав кнопку продувки газовой магистрали 35, при этом необходимо проконтролировать расход газа. По возможности проверить утечки.
- Протянуть проволоку через канал горелки, нажав кнопку протяжки проволоки 32. Скорость при протяжке имеет два значения. Оба значения можно настроить во время протяжки регулятором 30.
- Вращением рукоятки фиксатора 44 необходимо отрегулировать прижимное усилие сварочной проволоки таким образом, чтобы при блокировке катушки ролики подающего механизма проскальзывали.
- На панели управления установить параметры сварочного процесса.
- Во время работы следить за нагревом в местах присоединения сварочных кабелей к полуавтомату.
- После окончания работы: перекрыть вентиль баллона, стравить оставшийся газ, отключить автоматический выключатель, отсоединить сетевой кабель от питающей сети, **тщательно осмотреть место проведения сварочных работ для исключения возможности возникновения пожара.**

9.2 РУЧНАЯ АРГОНО-ДУГОВАЯ СВАРКА НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

Внимание! Необходимо осторожно обращаться с газовым баллоном: не ронять, не нагревать, не допускать утечки газа.

- Перед подключением редуктора к газовому баллону необходимо кратковременно открыть вентиль для продува загрязнений. Прикрутить редуктор к баллону, обеспечить выходное давление не выше 6 Бар. Присоединить газовый шланг к штуцеру редуктора и к штуцеру 11 полуавтомата на задней панели.
- Подключить сварочную горелку. Силовой разъем, газовую магистраль и кнопку горелки подключают к «евроразъёму» **8** на передней панели полуавтомата (горелка должна иметь подходящий разъём).
- Вставить кабельную вилку обратного провода в розетку «+» на передней панели полуавтомата и повернуть её по часовой стрелке до упора.
- Во избежание раскручивания вывода смены полярности **8.1**, необходимо повернуть вывод против часовой стрелки и вставить кабельную вилку в розетку «—» **6**, затем закрутить по часовой стрелке до упора.
- Вставить вилку в розетку. Включить автоматический выключатель полуавтомата.
- Открыть вентиль баллона. Вентилем газового редуктора необходимо отрегулировать расход защитного газа на уровне 6...12 литров в минуту (таблица 9.1). Продуть газовый шланг и канал горелки, нажав кнопку продувки газовой магистрали 35, при этом необходим проконтролировать расход газа. По возможности проверить утечки.
- С помощью панели управления установить параметры сварочного процесса.
- Во время работы следить за нагревом в местах присоединения разъемов сварочных кабелей к полуавтомату.
- После окончания работы: перекрыть вентиль баллона, стравить оставшийся газ, отключить автоматический выключатель, отсоединить сетевой кабель, **тщательно осмотреть место** проведения сварочных работ для исключения возможности возникновения пожара.

Диаметр электрода и газового сопла можно выбрать по таблице 9.1.

Таблица 9.1 Выбор диаметра электрода и газового сопла при сварке РАД

Пиадазон срадо	шого тока. А	Диаметр	Газовое со	Расход газа	
Диапазон сваро	чного тока, н	электрода, мм	Номер	Øмм	(Аргон), л/мин
25	90	1.6	4/5/6	6.5/8.0/9.5	6-7
30	150	2.4	6/7	9.5/11	7-8
45	200	3.2	7/8/10	11/12.5/16	8-10
60	350	4.0	10/11	16/17.5	10-12

9.3 РУЧНАЯ ДУГОВАЯ СВАРКА ПОКРЫТЫМ ЭЛЕКТРОДОМ

- Подключить сварочные кабели. При выборе полярности необходимо руководствоваться указаниями изготовителя электродов. Вывод смены полярности **8.1** используется только для полуавтоматического режима и режима РАД сварки.
- Вставить вилку в розетку.
- Включить автоматический выключатель полуавтомата.
- С помощью панели управления установить параметры сварочного процесса.
- Во время работы следить за нагревом в местах присоединения разъемов сварочных кабелей к полуавтомату.
- После окончания работы: отключить автоматический выключатель, отсоединить сетевой кабель от питающей сети.

9.4 ВЫБОР СВАРОЧНОГО КАБЕЛЯ

Нормативная длина сварочных проводов составляет не менее 2,5 м, в противном случае полуавтомат оказывается на опасном расстоянии к сварочной дуге: возможно засасывание вентилятором паров металла, повреждающих детали внутри корпуса. В качестве сварочного кабеля необходимо использовать медный кабель с резиновой изоляцией, например, марки КГ с сечением 16-25 мм². Использование кабелей или проводов с изоляцией из полимерных материалов, распространяющих горение, не допускается. Выбирать сварочный кабель необходимо согласно таблице токовых нагрузок для сварочных кабелей (таблица 9.2).

Подключение полуавтомата к питающей электрической сети 230 В допустимо, если сечение медных проводов сети не менее 2,5 $\,$ мм 2 , а алюминиевых не менее 4 $\,$ мм 2 . Длина проводов для подключения к сетевому щитку с учетом удлинителя по нормам не должна превышать 15 $\,$ м.

Таблица 9.2 Зависимость максимального значения сварочного тока

Сечение, мм2	Toi	к сварки, А		Падение напряжения на каждые 100 А, В				
CEGEHNE, MINI	ПВ=100%	ПВ=60%	ПВ=30%	длина 7 м	длина 14 м	длина 20 м		
16	175	225	320	0,8	1,6	2,2		
25	220	285	400	0,5	1,0	1,4		
35	270	350	490	0,3	0,7	1,0		

Максимальное значение сварочного тока гарантируется: при напряжении питающей сети $230 \text{ B} \pm 10\%$, длине сетевого медного провода 2,5 м сечением 2,5 мм 2 (сетевой провод полуавтомата), и общей

длине медных сварочных кабелей 3+3=6 м сечением 16 мм². В остальных случаях максимальное значение сварочного тока не гарантируется. В таблице **9.3** приведены значения максимального сварочного тока для полуавтомата, зависящие от напряжения сети, длины медного сетевого провода сечением 2,5 мм² и общей длины медных сварочных кабелей сечением 16 мм².

Таблица 9.3 Зависимость максимального значения сварочного тока

	Длина сетевого провода, м 2,5				30			60				90							
	Общая длина сварочного кабеля, м			6	16	26	36	6	16	26	36	6	16	26	36	6	16	26	36
ение, В	200	ный	ок, А	200	195	190	185	190	180	170	160	165	155	145	140	145	140	-	-
Сетевое напряжение,	180	Максимальный	сварочный ток, А	185	175	165	155	165	155	145	140	140	_	_	_	_	_	_	-
Сетевое	160	Мак	сварс	165	155	145	140	-	_	_	_	-	-	_	_	_	_	_	-

10 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- Для обеспечения работоспособности в зависимости от интенсивности загрязнения необходимо своевременно производить очистку от пыли и грязи. При обслуживании разрешается снимать крышку корпуса полуавтомата и продувать сжатым воздухом. Обслуживание должен производить специалистэлектрик. Перед началом работы и по окончании производить профилактический внешний осмотр. Выявленные повреждения обязательно устранять. Следить за исправностью силовых электрических контактов. Не реже одного раза в 3 месяца проверять усилие затяжки.
- Проверять сопротивление изоляции один раз в 6 месяцев. Для проведения испытаний соединить перемычкой силовые выводы полуавтомата «+» и «-», замкнуть между собой штыри вилки питания (кроме вывода заземления) и включить автоматический выключатель полуавтомата. Измерение сопротивления изоляции проводить согласно ГОСТ Р МЭК 60794-1-2023 (пункт 6.1.4) напряжением постоянного тока значением 500 В при комнатной температуре между следующими цепями: штырями вилки питания и силовыми выводами (сопротивление изоляции не менее 5 МОм); штырями вилки питания и выводом заземления на корпусе полуавтомата (сопротивление изоляции не менее 2,5 МОм); силовыми выводами и выводом заземления на корпусе полуавтомата (сопротивление изоляции не менее 2,5 МОм).
- При наличии серьезных повреждений необходимо производить ремонт в мастерских, имеющих договор по обслуживанию с предприятием изготовителем. Все адреса мастерских можно узнать на сайте, или по телефонам указанным в пункте 11 ИНФОРМАЦИЯ О ПРЕДПРИЯТИИ-ИЗГОТОВИТЕЛЕ.
- Транспортировка полуавтомата должна выполняться в упакованном виде, только в вертикальном зафиксированном положении, без ударов и сильной тряски.

11 ИНФОРМАЦИЯ О ПРЕДПРИЯТИИ-ИЗГОТОВИТЕЛЕ

АО «Электро Интел»	Отдел сбыта	Служба сервиса и
		технической поддержки
603057 г. Нижний Новгород,	телефон: 8 (800) 700-57-98	телефон: 8 (800) 700-57-98
ул. Нартова, дом 2 www.ei-neon.ru	e-mail: mail@ei-neon.ru	e-mail: service@ei-neon.ru

