## **Contact**Europe, Africa, West Asia

**BASF SE** 

Pigments E-EDC/FI – J 550 67056 Ludwigshafen Germany

service-edc@basf.con

#### www.basf.com/pigments

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do no relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights, etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product results exclusively from the statements made in the product specification. It is the responsibility of the recipient of our product to ensure that any proprietary rights and existing laws and legislation are observed. When handling these products, advice and information given in the safety data sheet must be complied with. Further, protective and workplace hygiend measures adequate for handling chemicals must be observed.

® = Registered trademark of the BASF Group 
®1 = Registered trademark of Xenotest Gesellschaft für die Herstellung von Materialprüfgeräten mbH
EDC 0215e





# Amazing colors and effects – unique, sustainable performance

To give your powder coatings the performance you demand, BASF offers a broad range of raw materials. Our pigments and additives not only enable a variety of colors and effects – they also enhance resistance to corrosion, scratching, or chemical impacts. With our Sustainable Solution Steering method, our pigments have furthermore been systematically evaluated under sustainability criteria. This allows us to assess the sustainability performance of each of our products in its specific application. We create chemistry that makes performance love sustainable solutions.

For industrial coatings, we identified resource efficiency, durability, and improved health and safety to be among the key drivers for more sustainable formulations. Pigments and additives that contribute substantially to these drivers along the value chain have been classified as Sustainability Accelerators.

The detailed analysis of our portfolio and externally assured methodology to assign our products to different categories according to their contribution to sustainability allow us to offer you the solutions you need.

Let's take a joint look at your specific requirements and find out how we can further improve both your, as well as our, sustainability profile!

Learn more about BASF's commitment to driving sustainable solutions at: www.basf.com/sustainability

#### Yellow

|                              |                |                  |          |                      | Temperature          | atabilit.            |                      |            | Fastness to v | weathering (2,00 | 00 h Xenotest®1) |      |            |     |        |          |                 |
|------------------------------|----------------|------------------|----------|----------------------|----------------------|----------------------|----------------------|------------|---------------|------------------|------------------|------|------------|-----|--------|----------|-----------------|
| Product                      | Sustainability | Chemistry        | Color    | Density              | remperature          | Stability            |                      | Ease of    | Inorganic     |                  | Organic          |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                              | Accelerator*   | ,                | index    | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion | Full shade    | 1:1              | Full shade       | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended produc           | ts for powde   | r coatings       |          |                      |                      |                      |                      |            |               |                  |                  |      |            |     |        |          |                 |
| Paliotol® Yellow L 0962 HD   | -              | Quinophthalone   | P.Y. 138 | 2.02                 | < 2                  | < 2                  | 2–4                  | Very high  | -             | -                | 4–5              | 3    | -          | -   | Low    | Fair     | Fair            |
| Sicotan® Yellow L 1010       | -              | Ni/Sb/Ti oxide   | P.Y. 53  | 4.50                 | < 2                  | < 2                  | < 2                  | High       | 5             | 5                | -                | -    | -          | -   | Fair   | Low      | High            |
| Cromophtal® Yellow L 1061 HD | -              | Benzimidazolone  | P.Y. 151 | 1.54                 | < 2                  | < 2                  | 2–4                  | Very high  | -             | -                | 4–5 d            | 3    | -          | -   | Fair   | Fair     | Low             |
| Cromophtal® Yellow L 1084 HD | -              | Benzimidazolone  | P.Y. 154 | 1.59                 | < 2                  | < 2                  | 2–4                  | High       | -             | -                | 4–5              | 4    | -          | -   | Low    | High     | Fair            |
| Sicopal® Yellow L 1120       | •              | Bismuth vanadate | P.Y. 184 | 6.50                 | < 2                  | < 2                  | 2–4                  | Very high  | 5             | 5                | -                | -    | -          | -   | High   | Low      | High            |
| Paliotan® Yellow L 1145      | -              | Hybrid           | -        | 3.90                 | < 2                  | 2–4                  | 4–6                  | Very high  | -             | -                | -                | -    | 4–5        | 4   | High   | Fair     | Fair            |
| Sicopal® Yellow L 1600       | •              | Bismuth vanadate | P.Y. 184 | 5.50                 | < 2                  | 2–4                  | 4–6                  | Very high  | 5             | 5                | -                | -    | -          | -   | High   | Low      | High            |
| Paliotan® Yellow L 1645      | -              | Hybrid           | -        | 5.70                 | < 2                  | 2–4                  | 4–6                  | Very high  | -             | -                | -                | -    | 4–5        | 4   | High   | Fair     | Low             |
| Paliotan® Yellow L 1945      | -              | Hybrid           | -        | 5.00                 | < 2                  | < 2                  | 4–6                  | Very high  | -             | -                | -                | -    | 5          | 5   | High   | Fair     | Low             |
| Paliotan® Yellow L 2045      | -              | Hybrid           | -        | 3.60                 | < 2                  | < 2                  | 4–6                  | Very high  | -             | -                | -                | -    | 4–5        | 4   | High   | Fair     | Low             |
| Irgazin® Yellow L 2060       | -              | Isoindolinone    | P.Y. 110 | 1.78                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5 d            | 4–5  | -          | -   | Low    | High     | High            |
| Sicotan® Yellow L 2110       | -              | Cr/Sb/Ti oxide   | P.Br. 24 | 4.30                 | < 2                  | < 2                  | < 2                  | High       | 5             | 5                | -                | -    | -          | -   | High   | Low      | High            |
| Paliotol® Yellow L 2146 HD   | -              | Isoindoline      | P.Y. 139 | 1.72                 | < 2                  | < 2                  | 2–4                  | Very high  | -             | -                | 4–5              | 3–4  | -          | -   | Fair   | Fair     | Low             |

### Orange

|                            |                |                        |         |                      | Tomporeture          | atabilit.            |                      |            | Fastness to v | veathering (2,00 | 00 h Xenotest®1) |      |            |     |        |          |                 |
|----------------------------|----------------|------------------------|---------|----------------------|----------------------|----------------------|----------------------|------------|---------------|------------------|------------------|------|------------|-----|--------|----------|-----------------|
| Product                    | Sustainability | Chemistry              | Color   | Density              | Temperature          | Stability            |                      | Ease of    | Inorganic     |                  | Organic          |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                            | Accelerator*   | ,                      | index   | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion | Full shade    | 1:1              | Full shade       | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended produc         | ts for powde   | r coatings             |         |                      |                      |                      |                      |            |               |                  |                  |      |            |     |        |          |                 |
| Sicopal® Orange L 2430     | -              | Sn/Zn/Ti oxide         | P.O. 82 | 4.90                 | < 2                  | < 2                  | < 2                  | Very high  | 4–5           | 4–5              | -                | -    | -          | -   | High   | Low      | High            |
| Paliotol® Orange L 2930 HD | -              | Pyrazolo-quinazolone   | P.O. 67 | 1.77                 | 4                    | 4–6                  | > 6                  | Very high  | -             | -                | 4                | 2    | -          | -   | High   | Fair     | Low             |
| Irgazin® Orange L 2985 HD  |                | Diketo-pyrrolo-pyrrole | P.O. 73 | 1.21                 | < 2                  | < 2                  | 2–4                  | High       | -             | -                | 4–5              | 4    | -          | -   | Low    | High     | Low             |

For more technical information, please consult the respective technical data sheet.

\* Product that has been evaluated with BASF's Sustainable Solution Steering method and contributes substantially to sustainability in the value chain.



#### Red

|                            |                |                        |          |                      | Temperature stability |                      |                      | Fastness to v | weathering (2,00 | 0 h Xenotest®1) |            |      |            |     |        |          |                 |
|----------------------------|----------------|------------------------|----------|----------------------|-----------------------|----------------------|----------------------|---------------|------------------|-----------------|------------|------|------------|-----|--------|----------|-----------------|
| Product                    | Sustainability | Chemistry              | Color    | Density              | remperature           | Stability            |                      | Ease of       | Inorganic        |                 | Organic    |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                            | Accelerator*   | ,                      | index    | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE  | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion    | Full shade       | 1:1             | Full shade | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended produc         | ts for powde   | r coatings             |          |                      |                       |                      |                      |               |                  |                 |            |      |            |     |        |          |                 |
| Irgazin® Scarlet L 3553 HD |                | Diketo-pyrrolo-pyrrole | P.R. 255 | 1.41                 | < 2                   | < 2                  | 2–4                  | High          | -                | -               | 4–5        | 4    | -          | -   | High   | High     | Fair            |
| Irgazin® Red L 3670 HD     | -              | Diketo-pyrrolo-pyrrole | P.R. 254 | 1.65                 | < 2                   | 2–4                  | 2–4                  | Very high     | -                | -               | 4–5        | 3–4  | -          | -   | Low    | High     | Fair            |
| Cinquasia® Red L 4100      | -              | Quinacridone           | P.V. 19  | 1.46                 | < 2                   | < 2                  | < 2                  | High          | -                | -               | 4–5        | 4–5  | -          | -   | Fair   | Fair     | Fair            |

#### Violet and Bordeaux

|                           |                |              |         |                      | Temperature s        | atability            |                      |            | Fastness to v | veathering (2,00 | 0 h Xenotest®1) |      |            |     |        |          |                 |
|---------------------------|----------------|--------------|---------|----------------------|----------------------|----------------------|----------------------|------------|---------------|------------------|-----------------|------|------------|-----|--------|----------|-----------------|
| Product                   | Sustainability | Chemistry    | Color   | Density              | remperature s        | stability            |                      | Ease of    | Inorganic     |                  | Organic         |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                           | Accelerator*   | ·            | index   | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion | Full shade    | 1:1              | Full shade      | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended products      | for powder     | coatings     |         |                      |                      |                      |                      |            |               |                  |                 |      |            |     |        |          |                 |
| Cinquasia® Magenta L 4540 | -              | Quinacridone | -       | 1.57                 | < 2                  | < 2                  | < 2                  | High       | -             | -                | 4–5             | 4–5  | -          | -   | Low    | Fair     | High            |
| Cinquasia® Violet L 5120  | -              | Quinacridone | P.V. 19 | 1.47                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5             | 4–5  | -          | -   | Low    | High     | High            |

For more technical information, please consult the respective technical data sheet.

\* Product that has been evaluated with BASF's Sustainable Solution Steering method and contributes substantially to sustainability in the value chain.

#### Blue and Green

|                         |                  |                  |           |                      | Temperature          | otobilit.            |                      |            | Fastness to v | weathering (2,00 | 00 h Xenotest®1) |      |            |     |        |          |                 |
|-------------------------|------------------|------------------|-----------|----------------------|----------------------|----------------------|----------------------|------------|---------------|------------------|------------------|------|------------|-----|--------|----------|-----------------|
| Product                 | Sustainability   | Chemistry        | Color     | Density              | remperature          | Stability            |                      | Ease of    | Inorganic     |                  | Organic          |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                         | Accelerator*     | G.16.1.16.1.y    | index     | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion | Full shade    | 1:1              | Full shade       | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended prod        | ducts for powder | r coatings       |           |                      |                      |                      |                      |            |               |                  |                  |      |            |     |        |          |                 |
| Heliogen® Blue L 6700 F |                  | ε-Phthalocyanine | P.B. 15:6 | 1.68                 | < 2                  | < 2                  | < 2                  | High       | -             | -                | 4–5              | 4–5  | -          | -   | Low    | High     | High            |
| Heliogen® Blue K 6907   | -                | α-Phthalocyanine | P.B. 15:1 | 1.60                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5              | 4–5  | -          | -   | Low    | High     | High            |
| Heliogen® Blue K 7090   | -                | β-Phthalocyanine | P.B. 15:3 | 1.60                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5              | 4–5  | -          | -   | Low    | High     | High            |
| Heliogen® Green L 8731  | •                | Phthalocyanine   | P.G. 7    | 2.14                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5              | 4–5  | -          | -   | Low    | High     | High            |
| Heliogen® Green L 9361  | -                | Phthalocyanine   | P.G. 36   | 2.94                 | < 2                  | < 2                  | < 2                  | Very high  | -             | -                | 4–5              | 4–5  | -          | -   | Low    | High     | High            |

#### Black

|                        |                |                   |          |                      | Tomografium          | otobilit.            |                      |            | Fastness to v | veathering (2,00 | 0 h Xenotest®1) |      |            |     |        |          |                 |
|------------------------|----------------|-------------------|----------|----------------------|----------------------|----------------------|----------------------|------------|---------------|------------------|-----------------|------|------------|-----|--------|----------|-----------------|
| Product                | Sustainability | Chemistry         | Color    | Density              | Temperature          | Stability            |                      | Ease of    | Inorganic     |                  | Organic         |      | Hybrids    |     | Hiding | Tinting  | Amine/<br>amide |
|                        | Accelerator*   | ,                 | index    | [g/cm <sup>3</sup> ] | 20 min.<br>180 °C ΔE | 10 min.<br>210 °C ΔE | 10 min.<br>240 °C ΔE | dispersion | Full shade    | 1:1              | Full shade      | 1:10 | Full shade | 1:3 | power  | strength | resistance      |
| Recommended products   | s for powde    | r coatings        |          |                      |                      |                      |                      |            |               |                  |                 |      |            |     |        |          |                 |
| Paliogen® Black L 0086 | •              | Perylene          | P.Bl. 32 | 1.50                 | < 2                  | 2–4                  | > 6                  | Fair       | -             | -                | 4–5             | 3    | -          | -   | Fair   | High     | High            |
| Sicopal® Black L 0095  | •              | Iron chrome oxide | P.Br. 29 | 5.10                 | < 2                  | < 2                  | < 2                  | High       | 5             | 5                | -               | -    | -          | -   | High   | Low      | High            |

#### Effect pigments for exterior application

| Product                                   | Sustainability Accelerator* | Based on       | Particle size** [µm] |
|-------------------------------------------|-----------------------------|----------------|----------------------|
| Transparent effects                       |                             |                |                      |
| Magnapearl® Exterior CFS 3103             | •                           | Natural mica   | 2–10                 |
| Mearlin® Exterior CFS Fine Pearl 1303V    | •                           | Natural mica   | 4–32                 |
| Mearlin® Exterior Fine Pearl 139V         | •                           | Natural mica   | 4–32                 |
| Mearlin® Exterior Bright Silver 139Z      | •                           | Natural mica   | 6–48                 |
| Mearlin® Exterior CFS Bright Silver 1303Z | •                           | Natural mica   | 10–48                |
| Lumina® Exterior Pearl Radiance 1303D     | •                           | Natural mica   | 10–48                |
| Mearlin® Exterior Bright White 139X       | •                           | Natural mica   | 6–48                 |
| Mearlin® Exterior Sparkle 139P            | •                           | Natural mica   | 10–110               |
| Mearlin® Exterior Star Pearl 139S         | •                           | Natural mica   | 13–120               |
| Mearlin® Exterior CFS Micro Gold 2303M    | •                           | Natural mica   | 2–10                 |
| Mearlin® Exterior CFS Fine Gold 2303V     | •                           | Natural mica   | 4–32                 |
| Lumina® Exterior Gold 2303D               | •                           | Natural mica   | 10–48                |
| Mearlin® Exterior CFS Super Orange 3303Z  | •                           | Natural mica   | 6–48                 |
| Mearlin® Exterior CFS Micro Red 4303M     | •                           | Natural mica   | 2–24                 |
| Mearlin® Exterior CFS Fine Red 4303V      | •                           | Natural mica   | 4–32                 |
| Lumina® Exterior Red 4303D                | •                           | Natural mica   | 10–48                |
| Mearlin® Exterior CFS Micro Violet 5303M  | •                           | Natural mica   | 2–24                 |
| Mearlin® Exterior CFS Fine Violet 5303V   | •                           | Natural mica   | 4–32                 |
| Mearlin® Exterior CFS Micro Blue 6303M    | •                           | Natural mica   | 4–32                 |
| Lumina® Exterior Red Blue 6303D           | •                           | Natural mica   | 10–48                |
| Lumina® Exterior Aqua Blue 7303D          | •                           | Natural mica   | 10–48                |
| Lumina® Exterior Turquoise T 303D         | •                           | Natural mica   | 10–48                |
| Mearlin® Exterior CFS Micro Green 8303M   | •                           | Natural mica   | 2–24                 |
| Lumina® Exterior CFS Green 8303D          | •                           | Natural mica   | 10–48                |
| Lumina® Royal Exterior Blue 6803H         | •                           | Natural mica   | 6–43                 |
| Lumina® Royal Exterior Aqua 7803H         | •                           | Natural mica   | 6–43                 |
| Lumina® Royal Exterior Indigo 5803H       |                             | Natural mica   | 6–43                 |
| Lumina® Royal Exterior Magenta 4803H      | •                           | Natural mica   | 6–43                 |
| Glacier™ Exterior Frost White S1303D      | -                           | Synthetic mica | 10–48                |
| Glacier™ Exterior Sparkle White SP 1303S  | -                           | Synthetic mica | 15–150               |

| Product                                         | Sustainability Accelerator* | Based on     | Particle size** [µm] |
|-------------------------------------------------|-----------------------------|--------------|----------------------|
| Semi-opaque effects                             |                             |              |                      |
| Mearlin® Exterior CFS Fine Brass 2323V          | •                           | Natural mica | 4–32                 |
| Mearlin® Exterior CFS Super Brass 2323Z         | •                           | Natural mica | 6–48                 |
| Lumina® Exterior Brass 2323D                    | •                           | Natural mica | 10–48                |
| Mearlin® Exterior CFS Super Bright Orange 3333Z | •                           | Natural mica | 6–48                 |
| Mearlin® Exterior CFS Fine Bronze 2503V         | •                           | Natural mica | 4–32                 |
| Mearlin® Exterior CFS Super Bronze 2503Z        | •                           | Natural mica | 6–48                 |
| Mearlin® Exterior CFS Micro Copper 3503M        | •                           | Natural mica | 2–24                 |
| Mearlin® Exterior CFS Fine Copper 3503V         | •                           | Natural mica | 4–32                 |
| Mearlin® Exterior CFS Super Copper 3503Z        | •                           | Natural mica | 6–48                 |
| Lumina® Exterior Copper 3503D                   | •                           | Natural mica | 10–48                |
| Lumina® Royal Exterior Copper 3903H             | •                           | Natural mica | 6–43                 |
| Mearlin® Exterior CFS Micro Russet 4503M        | •                           | Natural mica | 2–24                 |
| Mearlin® Exterior CFS Fine Russet 4503V         | •                           | Natural mica | 4–32                 |
| Mearlin® Exterior CFS Super Russet 4503Z        | •                           | Natural mica | 4–32                 |
| Lumina® Exterior Russet 4503D                   |                             | Natural mica | 10–48                |
| Mearlin® Exterior CFS Blue Russet 6503Z         | •                           | Natural mica | 6–48                 |
| Mearlin® Exterior Blue Green 7289Z              |                             | Natural mica | 6–48                 |

For more technical information, please consult the respective technical data sheet.

\* Product that has been evaluated with BASF's Sustainable Solution Steering method and contributes substantially to sustainability in the value chain.

\*\* Measured with Mastersizer 3000, Malvern Instruments Ltd.

#### Effect pigments for interior applications

| Product                       | Sustainability Accelerator* | Based on     | Particle size** [µm] |
|-------------------------------|-----------------------------|--------------|----------------------|
| Transparent effects           |                             |              |                      |
| Magnapearl® 3000              | •                           | Natural mica | 2–10                 |
| Magnapearl® 3100              | •                           | Natural mica | 2–10                 |
| Magnapearl® 2000              | •                           | Natural mica | 5–25                 |
| Magnapearl® 2100              | •                           | Natural mica | 5–25                 |
| Magnapearl® 1000              | •                           | Natural mica | 6–48                 |
| Magnapearl® 1100              | •                           | Natural mica | 6–48                 |
| Magnapearl® 5000              | •                           | Natural mica | 15–95                |
| Magnapearl® 4000              | •                           | Natural mica | 15–150               |
| Mearlin® Micro Gold 9260M     |                             | Natural mica | 2–10                 |
| Lumina® Gold 9Y30D            |                             | Natural mica | 10–48                |
| Mearlin® Sparkle Gold 9220J   | •                           | Natural mica | 10–130               |
| Mearlin® Super Orange 9330Z   | •                           | Natural mica | 6–48                 |
| Mearlin® Sparkle Orange 9320J | •                           | Natural mica | 10–130               |
| Lumina® Red 9R30D             | •                           | Natural mica | 10–48                |
| Mearlin® Sparkle Red 9420J    | •                           | Natural mica | 10–130               |
| Mearlin® Super Violet 9530Z   | •                           | Natural mica | 6–48                 |
| Mearlin® Micro Blue 9630M     | •                           | Natural mica | 2–10                 |
| Lumina® Red Blue 9830D        | •                           | Natural mica | 10–48                |
| Lumina® Aqua Blue 9A30D       | •                           | Natural mica | 10–48                |
| Mearlin® Sparkle Blue 9620J   | •                           | Natural mica | 10–130               |
| Lumina® Turquoise 9T30D       | •                           | Natural mica | 10–48                |
| Mearlin® Micro Green 9830M    | •                           | Natural mica | 2–10                 |
| Lumina® Green 9G30D           | •                           | Natural mica | 10–48                |
| Mearlin® Sparkle Green 9820J  | •                           | Natural mica | 10–130               |
| Firemist® Pearl 9G130L        |                             | Glass flakes | 52–188               |
| Firemist® Gold 9G230L         |                             | Glass flakes | 52–188               |
| Firemist® Red 9G430L          | -                           | Glass flakes | 52–188               |
| Firemist® Violet 9G530L       | -                           | Glass flakes | 52–188               |
| Firemist® Blue 9G630L         | -                           | Glass flakes | 52–188               |
| Firemist® Turquoise 9G730L    | -                           | Glass flakes | 52–188               |

| Product                                 | Sustainability Accelerator* | Based on       | Particle size** [µm] |
|-----------------------------------------|-----------------------------|----------------|----------------------|
| Transparent effects                     |                             |                |                      |
| Firemist® Green 9G830L                  | -                           | Glass flakes   | 52–188               |
| Firemist® Green 9G830L                  | -                           | Glass flakes   | 25–125               |
| Firemist® Green 9G830L                  | -                           | Glass flakes   | 25–125               |
| Lumina® Royal Blue 9680H                | •                           | Natural mica   | 6–48                 |
| Lumina® Royal Aqua 9780H                | •                           | Natural mica   | 6–48                 |
| Lumina® Royal Indigo 9580H              | •                           | Natural mica   | 6–48                 |
| Lumina® Royal Magenta 9480H             | •                           | Natural mica   | 6–48                 |
| Glacier™ Frost White 9S130D             | -                           | Synthetic mica | 10–48                |
| Glacier™ Sparkle White 9SP130S          | -                           | Synthetic mica | 15–150               |
| Semi-opaque effects                     |                             |                |                      |
| Mearlin® Micro Brass 9262M              | •                           | Natural mica   | 2–10                 |
| Mearlin® Super Brass 9232Z              | •                           | Natural mica   | 6–48                 |
| Lumina® Brass 9232D                     | •                           | Natural mica   | 10–48                |
| Mearlin® Sparkle Brass 9222J            | •                           | Natural mica   | 10–130               |
| Mearlin <sup>®</sup> Micro Bronze 9250M | •                           | Natural mica   | 2–10                 |
| Mearlin® Super Bronze 9250Z             | •                           | Natural mica   | 6–48                 |
| Mearlin® Sparkle Bronze 9250J           | •                           | Natural mica   | 10–130               |
| Mearlin® Micro Copper 9350M             | •                           | Natural mica   | 2–10                 |
| Mearlin® Super Copper 9350Z             | •                           | Natural mica   | 6–48                 |
| Lumina® Copper 9350D                    | •                           | Natural mica   | 10–48                |
| Lumina® Royal Copper 9390H              | •                           | Natural mica   | 10–48                |
| Mearlin® Sparkle Copper 9350J           | •                           | Natural mica   | 10–130               |
| Mearlin® Micro Russet 9450M             | •                           | Natural mica   | 2–10                 |
| Mearlin® Super Russet 9450Z             | •                           | Natural mica   | 10–48                |
| Mearlin® Super Blue Russet 9650Z        | •                           | Natural mica   | 6–48                 |
| Mearlin® Sparkle Russet 9650J           |                             | Natural mica   | 10–130               |

For more technical information, please consult the respective technical data sheet.

\* Product that has been evaluated with BASF's Sustainable Solution Steering method and contributes substantially to sustainability in the value chain.

\*\* Measured with Mastersizer 3000, Malvern Instruments Ltd.

#### Additives

| Product                   | Sustainability<br>Accelerator* | Chemistry                                                                         | Mw [g/mol]  | Mp [°C]   | Application/remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|--------------------------------|-----------------------------------------------------------------------------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hindered ar               | mine light st                  | abilizers (HA                                                                     | LS)         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tinuvin® 622 SF           | -                              | Oligomeric N-alkyl<br>HALS                                                        | 3,100-4,000 | 57–61     | Oligomeric, non-basic HALS with low volatility and migration tendency, antioxidant properties                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tinuvin® 111 FDL          | -                              |                                                                                   |             |           | HALS blend with triboelectric charging activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tinuvin® 152              | •                              | N-OR HALS                                                                         | 757         | 72–76     | Non-migrating, reactive low basic HALS for coatings over plastic substrates (e.g., polycarbonate, ABS substrates). Reactive primary hydroxyl group                                                                                                                                                                                                                                                                                                                                                                           |
| Tinuvin® 770 DF           | -                              | N-H HALS                                                                          | 480         | 81–85     | Basic HALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UV absorbe                | ers (UVA)                      |                                                                                   |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tinuvin® 900              | -                              | BTZ                                                                               | 448         | 138–142   | Multipurpose UVA for medium-quality application                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tinuvin® 928              | •                              | BTZ                                                                               | 442         | 109–113   | UVA for medium to high durability requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tinuvin®<br>Carboprotect® | -                              | BTZ                                                                               | 560         | 132–136   | Very red-shifted UVA for protection of aromatic epoxy systems, especially recommended for carbon or glass fiber reinforced composites; allows < 1% transmittance up to 420 nm                                                                                                                                                                                                                                                                                                                                                |
| Tinuvin® 405              | •                              | HPT                                                                               | 584         | 73–77     | UVA for high durability requirements, excellent photo and thermal permanence, no interaction with amines or any metal catalyst, alkali resistant, pronounced absorbance in UV-B range; further improved spectral coverage in combination with Tinuvin® 479                                                                                                                                                                                                                                                                   |
| Tinuvin® 479              | •                              | HPT                                                                               | 678         | 39–43     | UVA for highest durability requirements; best photo and thermal permanence, no interaction with amines or any metal catalyst, alkali resistant, specifically suited for thin film applications, highest extinction                                                                                                                                                                                                                                                                                                           |
| Tinuvin® 460              | •                              | HPT                                                                               | 630         | 97–101    | Red shifted UVA with extremely high extinction coefficient, allows <1% transmittance up to 370 nm; high photo and thermal stability                                                                                                                                                                                                                                                                                                                                                                                          |
| Photoinitiate             | ors                            |                                                                                   |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Irgacure® 819             |                                | Bis-(2-, 4-, 6-tri-<br>methyl-benzoyl-)<br>phenylphosphine<br>oxide               | 418.5       | 127–133   | Irgacure® 819 exhibits at low concentrations an outstanding curing performance in highly opaque white and colored coatings and affords minimum yellowing after exposure to sufficient amounts of UV radiation. The outstanding absorption properties allow the curing of thick sections. Due to its photo sensitivity at longer wavelengths it can easily be used in combinations with UV absorbers, e.g., Tinuvin® 400. For improved color and cost performance a combination 3:1 parts with Irgacure® 2959 is recommended. |
| Irgacure® 2959            | •                              | 1-[4-(2-Hydroxy<br>ethoxy)-phenyl]-<br>2-hydroxy-2-<br>methyl-1-propane-<br>1-one | 224.3       | 86.5–89.5 | Irgacure® 2959 is a highly efficient non-yellowing radical photoinitiator for acrylate or unsaturated polyester resins. It is recommended for clear coats and applications where low odor is required. The active hydroxyl group can be reacted with suitable crosslinkers.                                                                                                                                                                                                                                                  |

| Product                             | Sustainability<br>Accelerator* | Chemistry                    | Mw [g/mol]     | Mp [°C]     | Application/remarks                                                                                                                                                                                       |
|-------------------------------------|--------------------------------|------------------------------|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antioxidants                        | s (AO)                         |                              |                |             |                                                                                                                                                                                                           |
| Hindered pheno                      | lic (primary AC                | ) deactivate free            | radicals forme | ed during t | nermal oxidation                                                                                                                                                                                          |
| Irganox® 1010                       | -                              | Phenol                       | 1,178          | 110–125     | Multipurpose AO for a broad temperature range, mostly used to increase the long-term thermal stability; not to be used for direct gas-fired ovens                                                         |
| Irganox® 1076                       | -                              | Phenol                       | 531            | 50–55       | Multipurpose AO with low melting range, excellent compatibility and low color impact, for clear coats and low temperature curing systems, e.g., for GMA acrylics                                          |
| Irganox® 245                        | -                              | Phenol                       | 587            | 76–79       | Reduced sterically hindered AO for fast activation, lower temperature, or for combination with fully sterically hindered AO                                                                               |
| Phosphite (second AO (synergistic e |                                | ompose peroxide              | es formed dur  | ing the aut | cooxidation process, extend the performance of primary                                                                                                                                                    |
| Irgafos® 126                        | -                              | Phosphite                    | -              | -           | AO for heat stabilization during synthesis, processing, mixing, extrusion, curing, and for coatings that are baked or cured at relatively high temperatures; prevents yellowing in direct gas-fired ovens |
| Irgafos® 168                        | -                              | Phosphite                    | -              | -           | A0 for heat stabilization during synthesis, processing, mixing, extrusion, curing, and for coatings that are baked or cured at relatively high temperatures; prevents yellowing in direct gas-fired ovens |
| Antioxidant (AO)                    | blends                         |                              |                |             |                                                                                                                                                                                                           |
| Irganox® B900                       | -                              | Phenol/phosphite             | -              | 59–61       | Synergistic blend of primary and secondary AO                                                                                                                                                             |
| Optical brigh                       | ntener (OB)                    |                              |                |             |                                                                                                                                                                                                           |
| Tinopal® OB CO                      | -                              | Benzoxazole                  | 431            | 196–203     | OB for white, pastel-tone paints and clear coats                                                                                                                                                          |
| Leveling age                        | ent                            |                              |                |             |                                                                                                                                                                                                           |
| Efka® FL 3930                       | -                              | Acrylate copolymer on silica | -              | -           | Silicon-free flow and leveling agent                                                                                                                                                                      |

For more technical information, please consult the respective technical data sheet.

\* Product that has been evaluated with BASF's Sustainable Solution Steering method and contributes substantially to sustainability in the value chain.