

ФОТОЭЛЕКТРИЧЕСКИЕ МОДУЛИ ХЕВЕЛ

2020 г.

Содержание

Солнечная энергетика	(
руппа компаний «Хевел»	E
Рынок ФЭМ	1
ФЭМ Хевел	16

Солнечная энергетика

СОЛНЕЧНАЯ ЗНЕРГЕТИКА

Преимущества

□ ЭКОЛОГИЧЕСКАЯ ЧИСТОТА

Солнечная энергетика - это наиболее перспективная отрасль, которая частично заменяет энергию, получаемую от традиционных топливных ресурсов и, тем самым, выступает принципиальным шагом на пути защиты климата от глобального потепления

□ ВОЗОБНОВЛЯЕМОСТЬ И ПОСТОЯНСТВО

Солнечная энергия - это возобновляемый источник энергии в отличие от ископаемых видов топлива - угля, нефти, газа, которые не восстанавливаются, то есть ее нельзя перерасходовать в процессе удовлетворения нужд человечества в энергоносителях, так что ее хватит в избытке и на долю будущих поколений

□ СНИЖЕНИЕ РАСХОДОВ НА СЧЕТА ЗА ЭЛЕКТРИЧЕСТВО

Генерация собственной энергии дает экономию на использовании коммунальных услуг, которые ежедневно только дорожают. Среднее домашнее хозяйство может покрывать до 50% своих ежемесячных потребностей в энергии с помощью собственной панели альтернативной энергетики

□ БЕЗ ПОБОЧНЫХ ЭФФЕКТОВ

Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, не воздействуя на окружающую среду

□ ПРОСТОТА ОБСЛУЖИВАНИЯ

Оборудование работает в автономном режиме

СОЛНЕЧНАЯ ЗНЕРГЕТИКА

Мифы и реальность

МИФ	РЕАЛЬНОСТЬ
Солнечные батареи не работают в российских условиях	Уровень инсоляции в регионах России значительно отличается, варьируясь от 0,5 до 5,5 кВт/ч*м², в среднем соответствуя уровню инсоляции в Европе. Регионы с наибольшей инсоляцией находятся в южной части страны (4-5 кВт/ч*м²), тем не менее и в центральных, и в северных регионах батареи будут эффективно работать, просто понадобиться установить чуть больше панелей.
Солнечная энергетика слишком дорогая	Средняя цена солнечных батарей в период 2010-2019 гг. снизилась на 40% процентов. Во всем мире (в т.ч. РФ) стоимость производства электричества из солнечной энергии стала ниже, чем из стандартных видов топлива (газ, уголь, нефть).
Солнечные батареи не работают в снежную или облачную погоду	Снег не препятствует работе батарей – при работе панели имеют положительную температуру, поэтому снег просто скатывается с них. Облачность, хоть и влияет на работу панелей, но делает это в незначительной мере.
Избыток электроэнергии от сетевой ФЭС просто теряется	С декабря 2019 года вступил в силу Федеральный закон № 35-ФЗ «Об электроэнергетике»: любой гражданин или юридическое лицо, установивший солнечную электростанцию мощностью до 15 кВт, сможет отдавать излишки произведенной и не потреблённой энергии в сеть, при этом сбытовая организация обязана будет купить данную электроэнергию.
Избыток электроэнергии хранится в солнечных батареях	На самом деле, количество накопленной электроэнергии ограничено глубиной заряда аккумуляторов - необходима установка автономной или автономно-гибридной ФЭС
Солнечные батареи могут быть токсичны для окружающей среды после окончания срока эксплуатации	Использование солнечной энергии — экологически чистый вид получения альтернативной энергии, а утилизация солнечных панелей не является серьезной проблемой: например, российские модули "Хевел" по результатам тестов отнесены к отходам 5 класса опасности - то есть самые безопасные для флоры и фауны отходы, с которыми мы ежедневно встречаемся в жизни (к ним также относятся осколки керамики, яичная скорлупа и т.п.). Срок использования солнечных панелей — 35 лет, после чего они теряют эффективность и поддаются повторной переработке.
Панели солнечных батарей могут повредить крышу дома	Солнечные панели не только не вредят, а даже приносят пользу кровле, защищая ее от атмосферных явлений; при необходимости ремонта, в случае повреждения крыши, панель легко демонтируется.

Готовые решения | Январь 2020

ГК «Хевел»

Nº1

Единственный в Европе производитель гетероструктурных модулей в промышленном масштабе

Международный портфель проектов СЭС:

россия 1 ГВТ

за рубежом **178 МВТ**

Суммарный объём парков СЭС

711,5 MBT

Объем производства собственных PV ячеек/модулей

340 МВт/год

ХЕВЕЛ Преимущества

НАДЕЖНОСТЬ И КАЧЕСТВО

Собственный завод компании ежегодно выпускает более 340 МВт (модулей и ячеек)

ПОСТОЯННЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Научно-технический центр занимается научно-исследовательскими разработками в целях повышения качества модулей и элементов, их эффективности

ИННОВАЦИИ

Компания разработала новую технологию производства солнечных модулей на основе <u>гетероперехода HJT</u>. Модули нового поколения сочетают преимущества тонкопленочной и кристаллической технологий. КПД ячейки составляет 23,8%, мощность модуля составляет до 395 Вт

РЕШЕНИЕ ЗАДАЧ ЛЮБОЙ СЛОЖНОСТИ

Реализуем любые решения на всех типах модулей, включая проектирование, комплектацию и поставку

РЕАЛИЗОВАННЫЕ ПРОЕКТЫ

Сетевые солнечные электростанции

ОРЕНБУРГСКАЯ ОБЛАСТЬ

РЕСПУБЛИКА БАШКОРТОСТАН

44 MBT

90 MBT

САРАТОВСКАЯ ОБЛАСТЬ

45 MBT

ВОЛГОГРАДСКАЯ ОБЛАСТЬ

10 MBT

АСТРАХАНСКАЯ ОБЛАСТЬ

135 MBT

РЕСПУБЛИКА АЛТАЙ

55 MBT

РЕСПУБЛИКА БУРЯТИЯ

10 MBT

Готовые решения | Январь 2020

РЕАЛИЗОВАННЫЕ ПРОЕКТЫ

Инфраструктурные проекты

Bangkok, Thailand Офис Bangchak Corporation Plc Солнечная парковка

279 кВт

Вальс, Швейцария Завод Valser Крышная сетевая СЭС

116 кВт

ОНПЗ Газпром Нефть

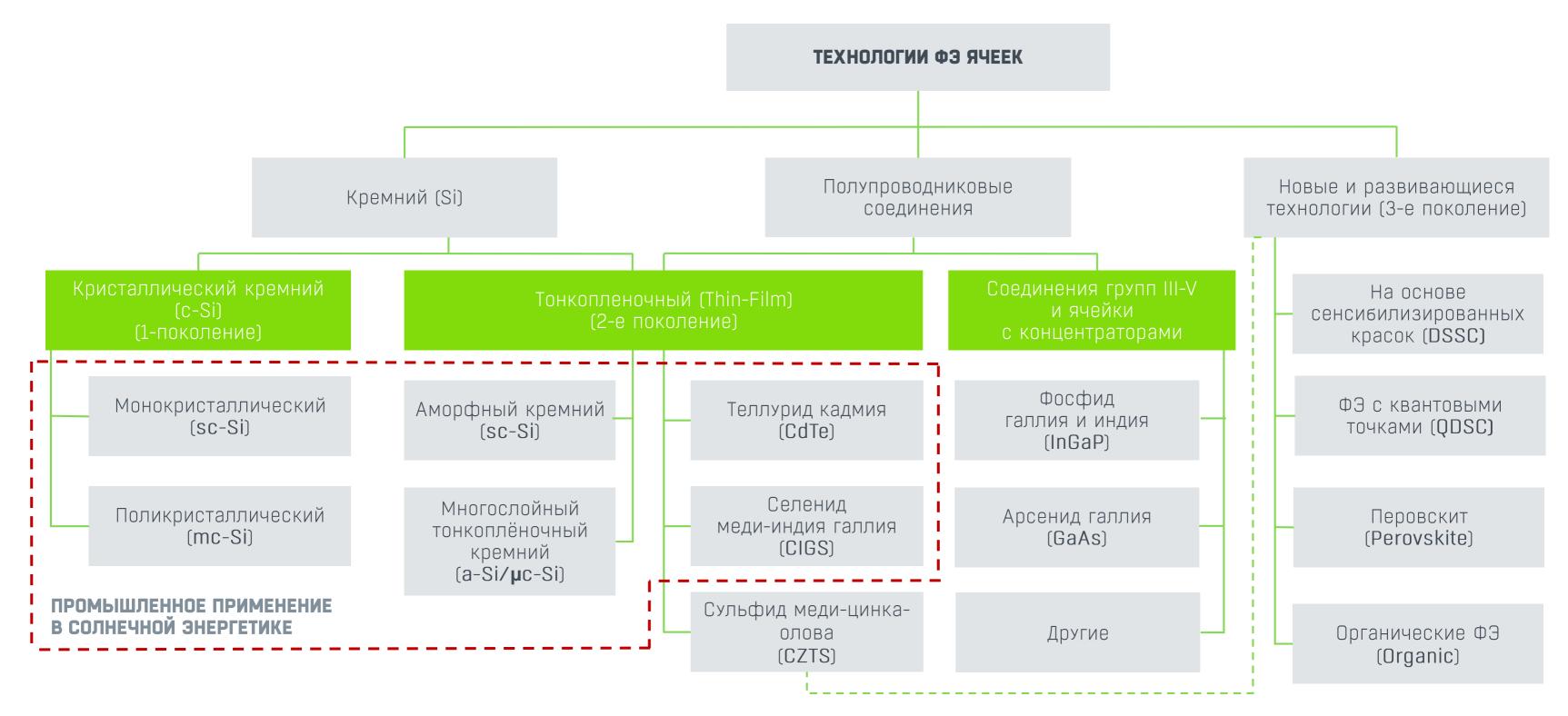
Фасадная система, трекеры, наземная и крышные СЭС

1 MBT

г. Тюмень Завод «Транснефть» Крышная сетевая СЭС

250 **KBT**

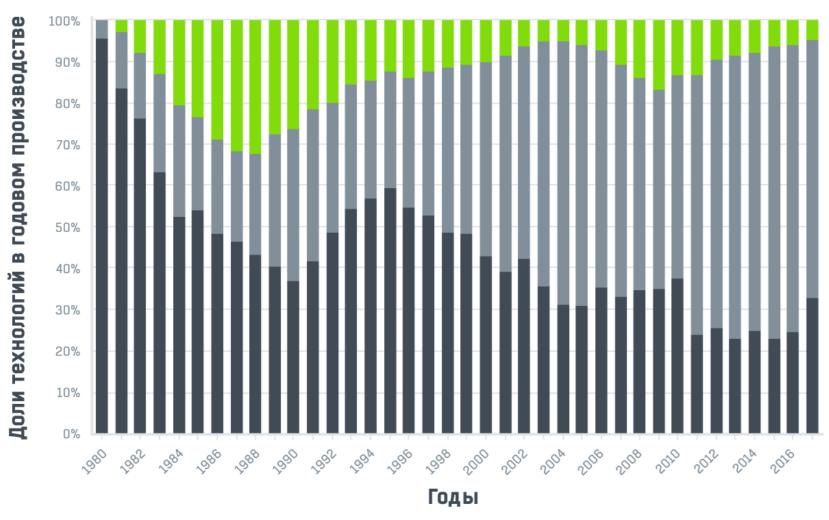
Готовые решения | Январь 2020



Рынок ФЭМ

КЛАССИФИКАЦИЯ ТЕХНОЛОГИЙ

производства фотоэлектрических преобразователей



РЫНОК ФЭМ ПО ТЕХНОЛОГИЯМ

в мире

Производство в 2017 (ГВт)

Тонкопленочные

4,5

поликристаллических ячеек, что обусловлено относительно низкой стоимостью продукции и хорошими показателями эффективности.

ТЕХНОЛОГИИ И ХАРАКТЕРИСТИКИ:

кристаллические ФЭМ

sc-Si (Cz-Si)

МОНОКРИСТАЛЛИЧЕСКИЕ

Получают путем литья кремния максимально высокой чистоты и выращивания моно кристаллов (Метод Чохральского). Кристаллы имеют одинаковую форму и ориентацию.

В настоящий момент модули на базе монокристаллического кремния имеют самый высокий КПД в классе модулей, применяемых в промышленных солнечных электростанций

Высокий КПД (17-23%)

Низкий температурный коэффициент

Стоимость

Чувствительность к загрязнению

mc-Si поликристаллические

Кремниевый расплав подвергают медленному охлаждению. Кристаллы имеют различную форму и ориентацию.

В настоящий момент модули на базе поликристаллического кремния занимают большую долю рынка ФЭМ.

Технология обуславливает сравнительно низкую стоимость

КПД ниже, чем у монокристаллических (12-19%) Требует больше места для размещения

ТОНКОПЛЕНОЧНЫЕ ФЗМ

(Thin-Film)

A-Si аморфный кремний

В отличие от кристаллического материала, здесь нет структурированного положения атомов. Поэтому у аморфного кремния хуже полупроводниковые свойства и, следовательно, меньше КПД преобразования света. Однако для производства элементов необходимо гораздо меньше кремния и он может быть нанесен практически на любую поверхность — стекло, металл или другой материал.

Самая низкая стоимость производства

КПД 5-11%, высокий уровень деградации (до 35%), нестабильность

CdTe на основе теллурида кадмия

Солнечные панели из теллурида кадмия (CdTe) создаются на основе пленочной технологии. Полупроводниковый слой наносят тонким слоем в несколько сотен микрометров.

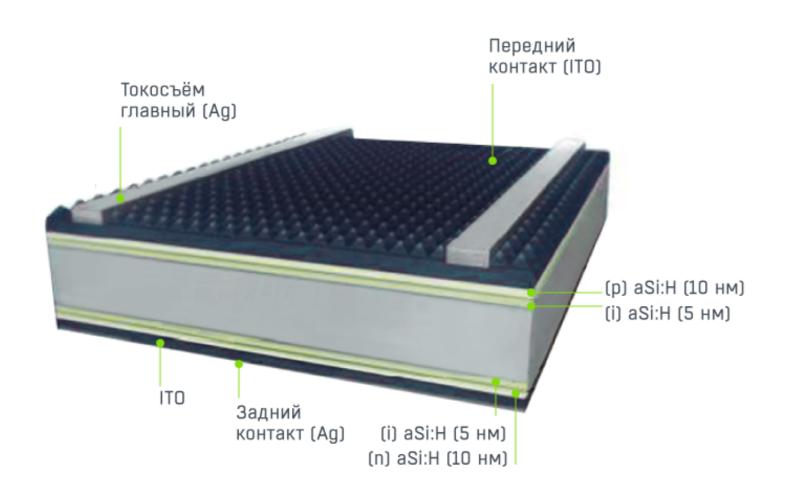
CIGS на основе селенида меди – индия-галлия

Технология CIGS включает осаждение тонкой пленки светопоглощающего слоя (медь, индиум, селениум и небольшое количество галлия), а затем осаждение очень тонкого верхнего слоя сульфида кадмия. Обычно наносят на стекло.

Более низкая стоимость, чем у кремниевых Низкая материалоемкость, быстрота производства

КПД 7-18%

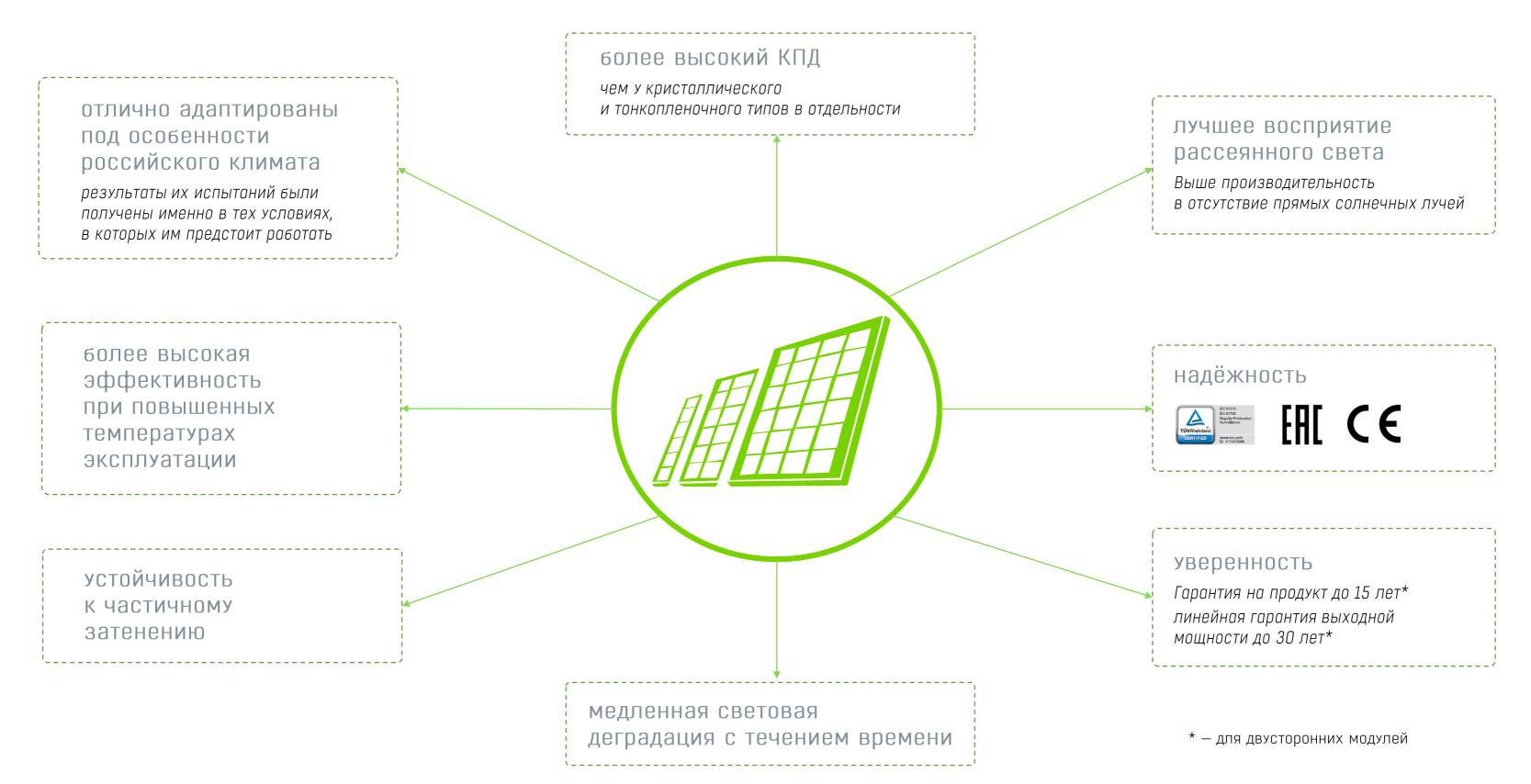
Ограниченность ресурсов (индий, галлий...)


Токсичность кадмия

ФЭМ Хевел

ЯЧЕЙКА ПО ТЕХНОЛОГИИ НЈТ

Производство ФЭП

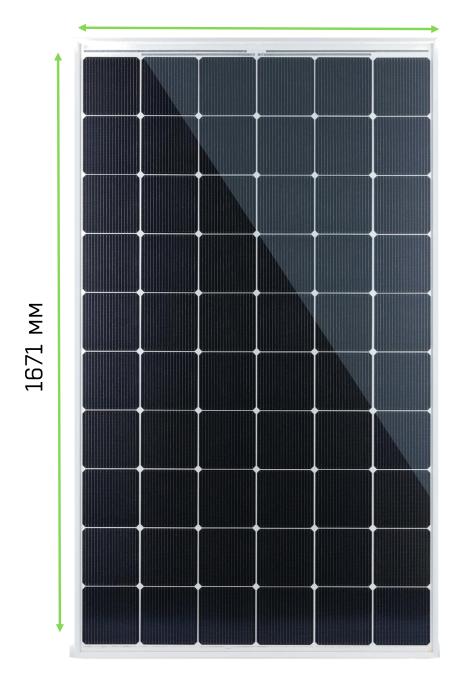


Технология HJT: c-Si основа + тонкоплёночная технология =

Высокий КПД (23,5%) + низкий температурный коэффициент

ГЕТЕРОСТРУКТУРНЫЕ (НЈТ) МОДУЛИ ХЕВЕЛ

модули нјт

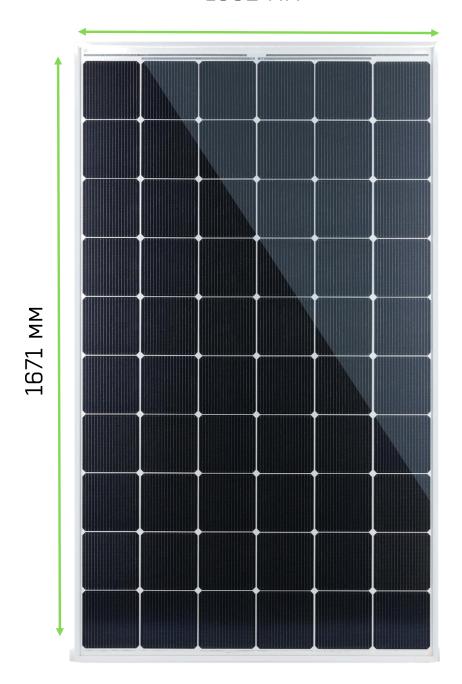


Модуль	Мощность	Число сторон	Габариты	Эффективность	Технология сборки	Максимальное напряжение системы
60 ячеек	от 240 до 335Вт	1	1671х1002х35мм	до 20%	SmartWire	1000/1500B
72 ячейки	от 360 до 395Вт	2	1996х1002х30мм	До 23,2%	5Busbar	1500B

ОДНОСТОРОННИЕ МОДУЛИ 240-290 ВТ

1002 мм

Вес 19кг


ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ									
Номинальная мощность (Рн), Вт	240	250	260	270	280	290			
Допустимое отклонение мощности ($\triangle P_{max}$), Вт	+5								
Эффективность (КПД), %	14,33 14,93 15,53 16,12 16,72 17,32								
Ток в рабочей точке (Impp), A	7,9	7,9	8,1	8,21	8,49	8,62			
Напряжение в рабочей точке (Vmpp), В	30,38	31,65	32,1	33,04	33,74	34,4			
Ток короткого замыкания (Isc), А	9,19	9,2	9,22	9,03	9,18	9,21			
Напряжение холостого хода (Voc), В	41,5	42,34	42,45	42,24	43,26	43,8			

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ						
Максимальное напряжение системы, В	1000/1500					
Класс огнестойкости	С					
Масса, кг	19					
Тип соединителя	МС4 совместимый					
Длина кабеля, мм	1000/4					
Макс. статическая нагрузка лицевая (например, снеговая), Па	5400					
Макс. статическая нагрузка задняя (например, ветровая), Па	3800					

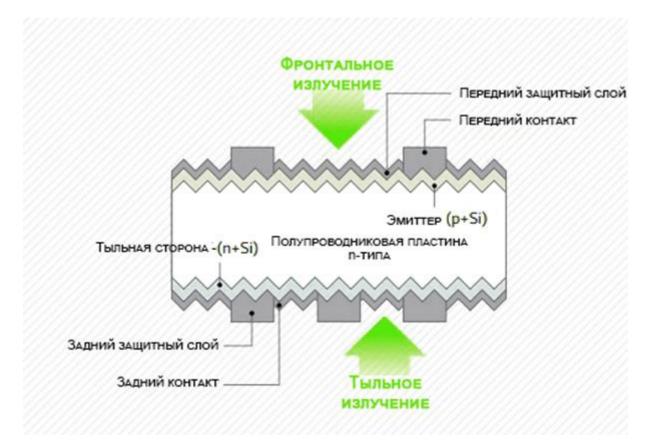
ОДНОСТОРОННИЕ МОДУЛИ 300-335 ВТ

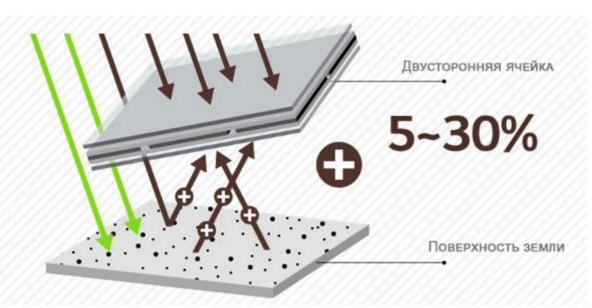
1002 мм

Вес 19кг

Отсутствие LID деградации

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ									
Номинальная мощность (P _{max}), Вт	300	310	315	320	325	330	335		
Допустимое отклонение мощности, Вт	+5								
Эффективность (КПД), %	18,12	18,76	19,04	19,1	19,4	19,7	20		
Ток в рабочей точке Ртах (Impp), A	8,66	8,78	8,81	8,83	8,86	8,97	9,04		
Напряжение в рабочей точке Pmax (Vmpp), V	35,22	35,99	36,35	36,28	36,74	36,84	37,06		
Ток короткого замыкания (Isc), А	9,26	9,32	9,33	9,33	9,4	9,48	9,55		
Напряжение холостого хода (Voc), В	43,92	44,16	44,22	43,97	44,08	44,18	44,34		


ОСНОВНЫЕ ХАРАКТЕРИСТИКИ							
Максимальное напряжение системы, В	1500						
Класс огнестойкости	С						
Масса, кг	19						
Тип соединителя	МС4 совместимый						
Длина кабеля, мм	1000/4						
Макс. статическая нагрузка лицевая (например, снеговая), Па	5400						
Макс. статическая нагрузка задняя (например, ветровая), Па	3800						


ДВУСТОРОННИЕ МОДУЛИ

устройство и преимущества

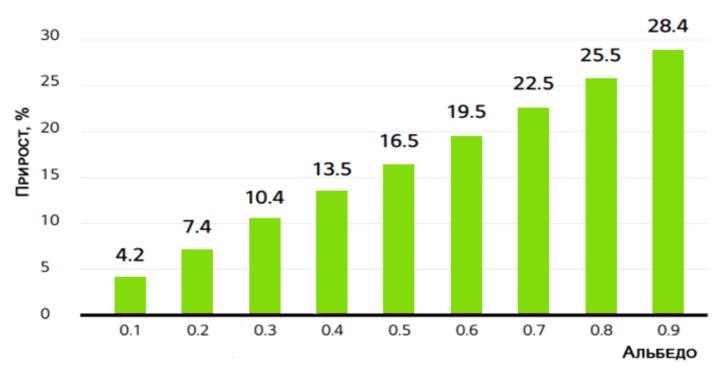
Двусторонние

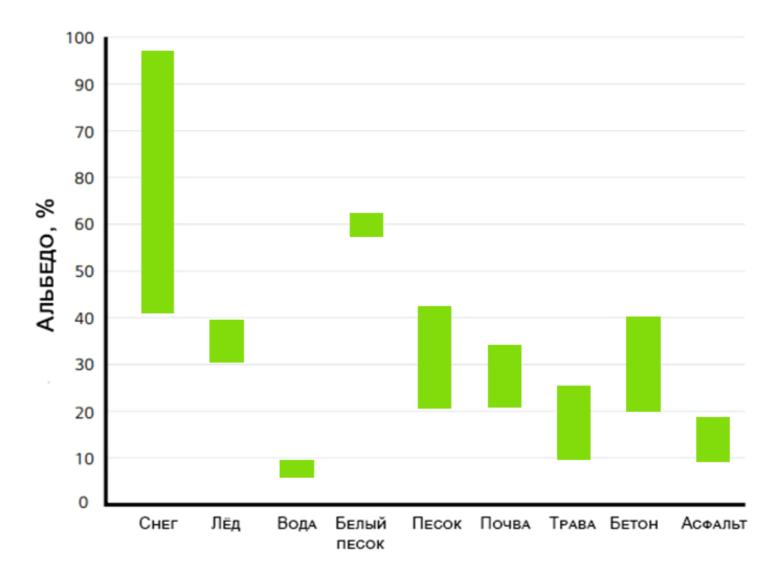
- Двусторонние модули созданы таким образом, чтобы использовать солнечное излучения как фронтальной, так и тыльной стороной;
- Модуль имеет симметричную структуру ячейки для использования дополнительного излучения с тыльной стороны
- Производительность двустороннего модуля зависит от различных условий, таких как: место установки, альбедо поверхности угол наклона, высота расположения ФЭМ над поверхностью, расстояние между опорными конструкциями, тип опорной конструкции и т.д.

ОСНОВНЫЕ ПРЕИМУЩЕСТВА:

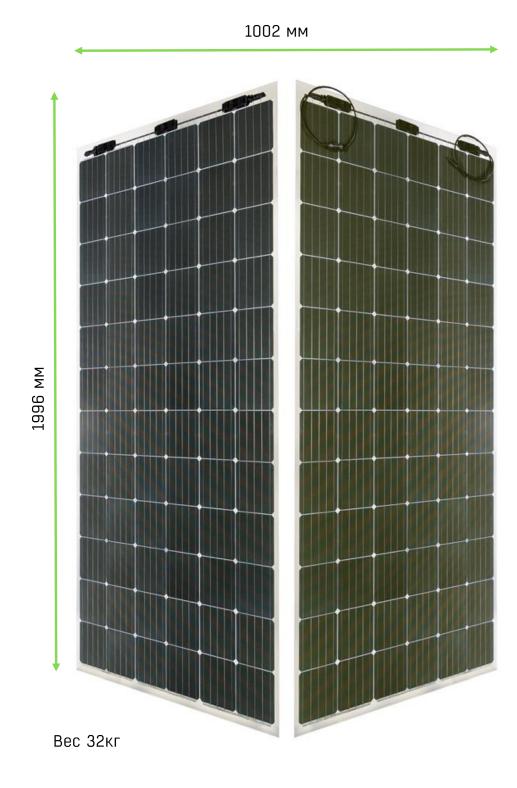
- Повышение удельных показателей мощности на кв.м
- Повышение выработки электроэнергии. Прирост выработки может достигать до 30 %
- Снижение затрат на кабельно-проводниковую продукцию
- Снижение затрат на металлоемкость на опорных конструкций

двухсторонние модули:


Альбедо-индекс


Индекс Альбедо представляет собой отношение отраженного излучения от какой-либо поверхности к прямому излучению. Альбедо может изменяться в широких пределах от 0% для абсолютно матовых поверхностей, до 100% для идеального отражения. Чем больше индекс Альбедо, тем больше прирост мощности.

Зависимость между Альбедо-индексом и приростом мощности, %



Альбедо индекс для различных поверхностей

ДВУХСТОРОННИЕ МОДУЛИ 360-395 ВТ

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ*								
Номинальная мощность (P _{max}), STC, Вт	360	365	370	375	380	385	390	395
Тыльная засветка +10%**, Вт	391	397	402	408	413	418	424	429
Тыльная засветка +20%**, Вт	423	428	434	440	446	452	458	464
Допустимое отклонение мощности, Вт	+5							
Эффективность* (КПД), %	18,00	18,25	18,5	18,75	19	19,30	19,50	19,75
Ток в рабочей точке (Ітрр), А	8,32	8,42	8,96	8,58	8,63	8,67	8,76	8,82
Напряжение в рабочей точке (Vmpp), V	43,3	43,92	44,55	44,17	44,37	44,6	44,71	44,84
Ток короткого замыкания (Isc), А	8,85	8,89	8,96	9,06	9,1	9,12	9,18	9,21
Напряжение холостого хода (Voc), V	52,1	52,38	52,62	52,59	52,78	52,95	53,08	53,18

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ						
Максимальное напряжение системы, В	1500					
Класс огнестойкости	С					
Масса, кг	32					
Тип соединителя	МС4 совместимый					
Длина кабеля, мм	на заказ / 4					
Макс. статическая нагрузка лицевая (например, снеговая), Па	5400					
Макс. статическая нагрузка задняя (например, ветровая), Па	3800					

До 395 Вт (+69 Вт при 20% тыльной засветки)

Эффективность модуля до 23,2% (+20% тыльной засветки)

Конфигурация «стекло-стекло»

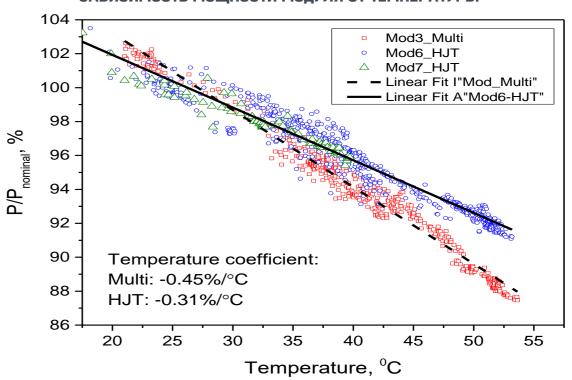
^{*} Значения являются средними по производству и представлены исключительно для справочных целей. Условия испытаний STC.

** Дополнительная мощность с обратной стороны в процентах от освещенности на STC

СРАВНЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ НЈТ-МУЛЬТИ

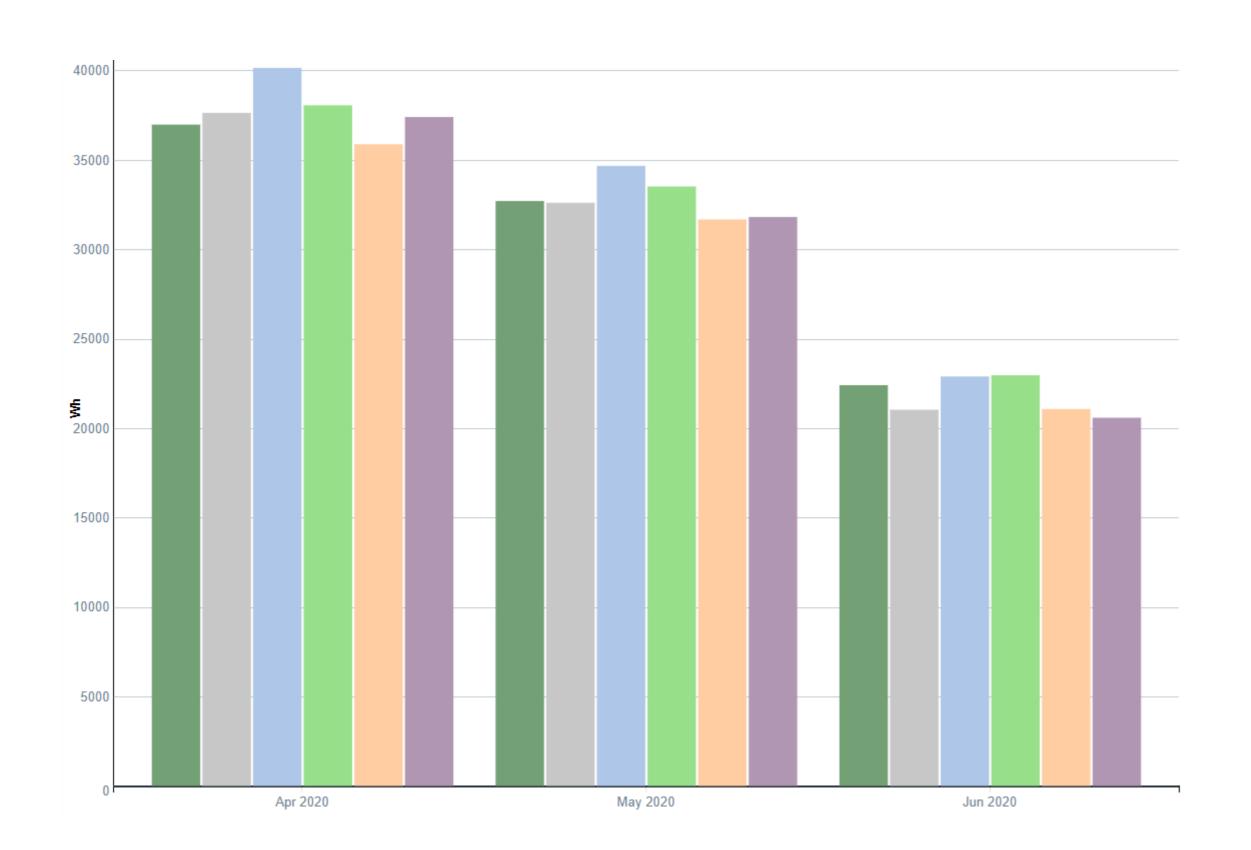
На площадке производства Хевел в Новочебоксарске (56 ° 07'00.0 "N 47 ° 30'00.0" Е) установлена испытательная станция на открытом воздухе.

	Multi	HJT Hevel
Номинальная мощность, [Вт]	240	290
Средняя удельная выработка (Р/Р _{потіпаї}) в день, [Вт*ч/Вт]	4.85	5.00


Более низкий коэффициент тепловых потерь мощности модулей НЈТ обеспечивает 4-5 дополнительных процентов мощности при номинальных условиях работы (без облаков, летнее время) по сравнению с модулями поликристаллическими.

Тесты на открытом воздухе подтверждают более высокую среднюю удельную мощность модулей НЈТ по сравнению с модулями Multi. Удельная выработка НЈТ будет увеличиваться в более южных широтах с более высокой средней рабочей температурой.

СРАВНЕНИЕ ЕЖЕДНЕВНОЙ ПРОИЗВОДИТЕЛЬНОСТИ МОДУЛЕЙ НЈТ И MULTI (летний день, максимальная температура модуля = 50 ° C)




ЗАВИСИМОСТЬ МОЩНОСТИ МОДУЛЯ ОТ ТЕМПЕРАТУРЫ

Производительность ФЗМ Хевел сравнение с ФЗМ др. марок

КАК ВЫБРАТЬ КАЧЕСТВЕННЫЙ ФЗМ

- Бренд производителя
- Наличие и срок гарантийного использования приобретаемого изделия
- Мощность солнечной панели
- КПД устройства
- Класс эксплуатации устройства
- Напряжение устройства
- Температурный режим эксплуатации
- Корпус модуля

ПРИМЕРЫ РАСПОЛОЖЕНИЯ ФЗМ

СПАСИБО ЗА ВНИМАНИЕ!