QuartzPLL

DIRECT DRIVE TURNTABLE

SERVICE MANUAL

0

MODEL PL-550 COMES IN THREE VERSIONS DISTINGUISHED AS FOLLOWS:

Type	Voltage	Remarks
HGT	220 V and 240 V (Switchable)	SEMKO (Sweden), NEMKO (Norway), DEMKO (Denmark) and EI (Finland) approved model without phono cartridge.
S	$110 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V (Switchable)	General export model with phono cartridge
ST	$110 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V (Switchable)	General export model without phono cartridge

This service manual is applicable to the PL-550/S, ST type. When repairing the PL-550/HGT type please see the manual on pages 43-48.

CONTENTS

1. SPECIFICATIONS 4
2. PANEL FACILITIES 5
3. PARTS LOCATIONS 7
4. EXPLODED VIEW 11
5. NOMENCLATURE OF SCREW, WASHERS AND NUT 16
6. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERNS AND PARTS LIST
6.1 Schematic Diagram 17
6.2 Drive Control Assembly (PWG-008) 19
6.3 Power Supply Assembly (PWR-822) 22
6.4 Positional Detector Assembly (PWX-006) 24
7. PACKING 25
8. OPERATING PRINCIPLES CIRCUIT DESCRIPTION
8.1 Block Diagram 27
8.2 Motor Operation 29
8.3 Waveforms 36
9. TROUBLE SHOOTING GUIDE
9.1 Motor Does Not Rotate 37
9.2 Motor Run-away 38
9.3 Motor Alternates Between Forward And Reverse Rotation 39
9.4 Unstable Rotation Near Rated Speed 39
10. ADJUSTMENT PROCEDURES 40
11. D.D MOTOR EXPLODED VIEW 41
PL-550 Additional Service Manual Enclosed Herewith
PL-550X/ST differs from PL-550 at the point of cabinet appearance;it is black cabinet. Except packing case and cabinet all of compo-nents are same as PL-550.

1. SPECIFICATIONS

Motor and Turntable
Motor Quartz PLL Hall motor
Turntable Platter . . 324 mm diam. aluminum alloy die-cast
Moment of Inertia . . . $340 \mathrm{~kg} \cdot \mathrm{~cm}^{2}$ (including platter mat)
Speeds 33-1/3 and 45rpm
Speed Control Range $\pm 6 \%$
Wow and Flutter Less than 0.025\% (WRMS)
Signal-to-Noise Ratio More than 70dB (DIN-B)
Rotational Characteristics
Build-up Time Within 240° rotation at $33-1 / 3 \mathrm{rpm}$
Speed Deviation Less than 0.003\%
Speed vs. Load Characteristics Stable up to 120 gramsdrag load
Speed Drift Less than $0.0003 \% / \mathrm{h}$ at $33-1 / 3 \mathrm{rpm}$
Less than $0.00004 \% /$ degree temp. change at $33-1 / 3 \mathrm{rpm}$
Tonearm
Type Static-balance type, S-shaped pipe arm
Effective Arm Length 221 mm
Overhang 15.5 mm
Usable Cartridge Weight 4 g (min.) to 14.5 g (max.)
(For cartridge weighs over 9.5 g , attach the sub weight)
Arm Height Adjust Range $\pm 5 \mathrm{~mm}$
Subfunctions
Anti-skating force control
Lateral balancer
Stylus pressure direct-readout counter weight
Arm height adjusting device
Cueing device
Headshell stand
Strobe light
Free stop hinges
Insulator feet
Furnished Cartridge (S type)
Type Moving magnet type PC-550E/II
Replacement stylusStylus Tip$0.3 \times 0.7 \mathrm{mil}$ diamond
Output Voltage 3 mV (at $1 \mathrm{kHz}, 50 \mathrm{~mm} / \mathrm{s}$ RMS)
Tracking Force 1.0 g to 1.8 g (proper 1.5 g)
Frequency Response 10 to $30,000 \mathrm{~Hz}$

Semiconductors

ICs 2
Transistors 9
Diodes 11
Hall elements 3
Accessories
45rpm Adaptor 1
Overhang gauge 1
Screwdriver 1
Sub weight 1
Cartridge mounting screws (ST, HGT type) 6
Cartridge mounting nuts (ST, HGT type) 2
Cartridge mounting washers (ST, HGT type) 2
Operating instructions 1
Miscellaneous
Power Requirements AC $110-120-220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Power Consumption 5 W
Dimensions $490(\mathrm{~W}) \times 185(\mathrm{H}) \times 390(\mathrm{D}) \mathrm{mm}$$19-5 / 16(\mathrm{~W}) \times 7-5 / 16(\mathrm{H}) \times 15-3 / 8(\mathrm{D}) \mathrm{in}$.
Weight $12 \mathrm{~kg} / 26 \mathrm{lb} 6 \mathrm{oz}$
NOTE:Specifications and design subject to possible modificationwithout notice, due to improvements.

2. PANEL FACILITIES

HEADSHELL STAND

Convenient stand for storing a spare cartridge. Aligh headshell guide pin with slot of stand and insert. Avoid storing here if the headshell is too large to allow the dust cover to be closed fully. The 45 rpm adaptor can also be placed here.

45 RPM ADAPTOR

Place on center shaft when playing 45 rpm records (with large center hole).

STROBE LIGHT

Lights to illuminate stroboscope when POWER/ARM ELEVATION lever is set to ON. The stroboscope appears to become stationary when the Quartz LOCK button is set to ON.

Supports the tonearm. Gently press tonearm in direction shown by arrow to clamp. Be sure to clamp when not playing records.

QUARTZ LOCK BUTTON

Quartz PLL system functions when button is depressed to ON. Platter rotation becomes precisely locked to the speed selected by the SPEED buttons.

SPEED ADJ. CONTROL

Can be used to increase or decrease the speed with respect to the selected rotation. Set Quartz LOCK button to OFF and turn this control toward the + direction to increase speed (maximum 6\%) and toward the - direction to decrease speed (maximum 6\%).
45 RPM SPEED BUTTON
Press to play 45 rpm records.
33 RPM SPEED BUTTON
Press to play 33-1/3 rpm records.

POWER/ARM ELEVATION LEVER

Combines power switch and tonearm elevation switch.
OFF Power is cut off.
ON-UP Power is turned on (platter rotates). When moved from DOWN to this position, the tonearm is raised.
DOWN Tonearm is gently lowered.

3. PARTS LOCATIONS

TOP VIEW
Headshell stand PNW-073

Plate
PAN-029

D.D. motor

PXM-029

4.EXPLODED

5. NOMENCLATURE OF SCREW, WASHERS AND NUT

The following symbols stand for screws, washers and nuts as shown in exploded view.

Symbol	Description	Shape
RT	Brazier head tapping screw	\square
PT	Pan head tapping screw	n-
BT	Binding head tapping screw	.
CT	Countersunk head tapping screw	\square
TT	Truss head tapping screw	$\sqrt{\square}$
OCT	Oval countersunk head tapping screw	
PM	Pan head machine screw	\square
CM	Countersunk head machine screw	0
OCM	Oval countersunk head machine screw	0
TM	Truss head machine screw	$\sqrt{\square}$
BM	Binding head machine screw	\square
PSA	Pan head screw with spring lock washer	\square^{8}
PSB	Pan head screw with spring lock washer and flat washer	\square
PSF	Pan head screw with flat washer	$\because \longrightarrow$

Symbol	Description	Shape
EW	E type washer	(5)
FW	Flat washer	(O)
SW	Spring lock washer	\cdots ¢
N	Nut	(0) θ
WN	Washer faced nut	(0) O
ITW	Internal toothed lock washer	(5)
OTW	Outernal toothed lock washer	\{0,
SC	Slotted set screw (Cone point)	$\theta 0$
SF	Slotted set screw (Flat point)	θ
HS	Hexagon socket headless set screw	(0) 3
OCW	Oval countersunk head wood screw	$\sqrt{\square}$
CW	Countersunk head wood screw	\square a
RW	Round head wood screw	$\sqrt{ }$

EXAMPLE

$\underbrace{\frac{\mathrm{PM}}{} \cdot 3 \times 8} \begin{aligned} & \text { diameter in } \mathrm{mm}(d) \\ & \text { dength in } \mathrm{mm}(l)\end{aligned}$

FW. \quad thickness in $\mathrm{mm}(t)$
diameter in $\mathrm{mm}(d)$
Symbol

1 2

6. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERNS AND

6.1 SCHEMATIC DIAGRAM

A

B

C

DRIVE CONTROL Ass'y PWG-008

ERNS AND PARTS LIST

WITCHES:

CAUTION

When Handling IC PD1001, Please Observe:
IC PD1001 (Q5 in the Drive Control Ass'y PWG-008) is a C-MOS IC of extremely low power consumption and very high input impedance. Unless handled with special care, it could be damaged by static electricity induction. This IC is supplied with a shorting cap (of aluminum foil) attached. When soldering or performing other repair work, always attach this cap as shown below. Remove the cap after the repair has been completed.
Also, this type of IC must not be inserted in a polystyrene package for storage.

Miscellaneous Parts List

Symbol	Description	Part No.
	Drive control assembly Positional detector assembly Power supply assembly Power transformer	PWG-008
S101	Microswitch (Power)	PWR-822
S102	Microswitch (Speed selector)	PTT-014
S103	Push switch (Quartz Lock)	KSF-023
	Neon lamp	PSG-001
	Line voltage selector	PEL-011
VR101	Variable resistor	PSB-001
		PCS-003

Parts List of Drive Control Assembly (PWG-008)

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	2 SC1312 H or G
Q2	Transistor	2 SC1312 H or G
Q3	Transistor	2 SC945 R, Q or P
Q4	Transistor	2 SC945 R, Q or P
Q5	IC	PD1001
Q6	IC	
DA2001		
D	Diode	1 S2473

RESISTORS

Symbol	Description			Part No.
VR1	Semi-fixed	15k-B		PCP-006
VR2	Semi-fixed	680-B		PCP-007
R1	Carbon film	10k		RD1/4PS 103J
R2	Carbon film	180k		RD1⁄4PS 184J
R3	Carbon film	82k		RD1⁄PS 823J
R4	Carbon film	10k		RD1/4PS 103J
R5	Carbon film	180k		RD $1 / 4 \mathrm{PS} 184 \mathrm{~J}$
R6	Carbon film	82k		RD1/4PS 823J
R7	Carbon film	1M		RD $1 / 4 \mathrm{PS} 105 \mathrm{~J}$
R8	Carbon film	1M		RD1/4PS 105J
R9	Carbon film	47k		RD1/4PS 473J
R10	Carbon film	4.7M		RD1/4PS 475J
R11	Carbon film	1.5k		RD $1 / 4 \mathrm{PS} 152 \mathrm{~J}$
R12	Carbon film	56k		RD1/4PS 563J
R13	Carbon film	56k		RD1/4PS 563J
R14	Carbon film	56k		RD1/4PS 563J
R15	Carbon film	56k		RD $1 / 4 \mathrm{PS} 563 \mathrm{~J}$
R16	Carbon film	47k		RD1/4PS 473J
R17	Carbon film	39k		RD1/4PS 393J
R18	Carbon film	1M		RD $1 / 4 \mathrm{PS} 105 \mathrm{~J}$
R19	Carbon film	110k		RD1/4PS 114J
R20	Carbon film	110k		RD1/4PS 114J
R21	Carbon film	39k		RD1/4PS 393J
R22	Carbon film	91k		RD1/4PS 913 J
R23	Carbon film	10k		RD1/4PS 103J
R24	Carbon film	13k		RD1/4PS 133J
R25	Carbon film	27k		RD1/4PS 273J
R26	Carbon film	75k		RD1/4PS 753J
R27	Carbon film	33k		RD1/4PS 333J
R28	Carbon film	5.6k		RD1/4PS 562J
R29	Carbon film	5.1k		RD1/4PS 512J
R30	Carbon film	5.1k		RD1/4PS 512J
R31	Carbon film	5.1k		RD $1 / 4 \mathrm{PS} 512 \mathrm{~J}$
R32	Carbon film	5.1k		RD $1 / 4 \mathrm{PS} 512 \mathrm{~J}$
R33	Carbon film	4.7	1/2W	RD $1 / 2 \mathrm{PS} 4 \mathrm{R} 7 \mathrm{~J}$
R34	Carbon film	33		RD $1 / 4 \mathrm{PS} 330 \mathrm{~J}$
R35	Carbon film	33		RD1/4PS 330J

Symbol	Description		Part No.
R36	Carbon film	33	RD1/4PS 330J
R37	Carbon film	180	RD1/4PS 181J
R38	Carbon film	6.8k	RD1/4PS 682J
R39	Carbon film	1.8k	RD1/4PS 182J
R40	Carbon film	10k	RD1/4PS 103J

CAPACITORS

Symbol	Description			Part No.
C1	Electrolytic	47	10 V	CEA 470P 10
C2	Electrolytic	47	10 V	CEA 470P 10
C3	Electrolytic	22	10 V	CEA 220P 10
C4	Electrolytic	33	10 V	CEA 330P 10
C5	Electrolytic	0.22	10 V	CEA R22M 50NP
C6	Electrolytic	0.22	10 V	CEA R22M 50NP
C7	Mylar	0.1	50 V	CQMA 104K 50
C8	Mylar	0.068	50 V	CQMA 683K 50
C9	Ceramic	0.047	50 V	CKDYF 473Z 50
C10	Ceramic	33p	50 V	CCDCH 330J 50
C11	Ceramic	47p	50 V	CCDCH 470J 50
C12	Mylar	0.033	50 V	CQMA 333K 50
C13	Mylar	0.0012	50 V	CQMA 122J 50
C14	Electrolytic	1	50 V	CEA 010M 50NP
C15	Electrolytic	10	16 V	CEA 100P 16
C16	Electrolytic	0.33	35 V	CSZA R33M 35
C17	Electrolytic	2.2	16 V	CSZA 2R2M 16
C18	Electrolytic	1	50 V	CEA 010P 50
C19	Electrolytic	2.2	16 V	CSZA 2R2M 16
C20	Electrolytic	0.33	50 V	CEA R33M 50NP
C21	Electrolytic	0.22	50 V	CEA R22M 50NP
C22	Electrolytic	220	6 V	CEA 221P 6
C 23	Electrolytic	33	25V	CEA 330P 25
C24	Electrolytic	33	25V	CEA 330P 25
C25	Electrolytic	33	25V	CEA 330P 25
C26	Electrolytic	4.7	25 V	CEA 4R7P 25
C27	Electrolytic	1	50 V	CEA 010M 50NP
C28	Electrolytic	1	50 V	CEA O10M 50NP
C29	Electrolytic	1	50 V	CEA 010M 50NP
C30	Ceramic	0.047	50 V	CKDYF $473 Z 50$
C31	Electrolytic	47	25 V	CEA 470P 25
C32	Electrolytic	33	16 V	CEA 330P 16

OTHERS

Symbol	Description	Part No.
	Crystal	PSS-001
	Heat sink	PNS-002
	Angle	PNB-195
	Connector socket assembly (G)	PXA-169
	Connector pin (A)	PKP-008
	Connector pin (E)	PKP-011
	Connector pin (F)	PKP-012

6.3 POWER SUPPLY ASSEMBLY (PWR-822)

Parts List

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	2SD234
Q2	Transistor	2SC372-Y
Q3	Transistor	2SC372-Y
Q4	Transistor	2SC1279-S
Q5	Transistor	2SC372-Y
D1	Bridge rectifiers	PCX-010
D2	Bridge rectifiers	PCX-011
D5	Zener diode	WZ-061
D10	Diode	1S-1887

CAPACITORS

Symbol	Description			Part No.
C1	Myler	0.033	250 V	PCL-013
C3	Ceramic	0.01	250 V	ACG-001
C4	Electrolytic	470	50 V	CEA 471P 50
C5	Electrolytic	33	35 V	CEA 330P 35
C6	Electrolytic	100	25 V	CEA 101P 25
C7	Electrolytic	4.7	250 V	CEA 4R7P 250
C8	Electrolytic	2.2	25 V	CEB 2R2P 25

RESISTORS

Symbol	Description			Part No.
R1	Carbon film	47		RD1⁄4PS 470J
R2				
R3	Carbon film	1.8k		RD1⁄4PS 182J
R4	Carbon film	1.8k		RD $1 / 4 \mathrm{PS}$ 182J
R5	Carbon film	5.1k		RD1/4PS 512J
R6	Carbon film	10k		RD $1 / 4 \mathrm{PSS} 103 \mathrm{~J}$
R7	Carbon film	2.7k		RD1/4PS 272J
R8	Carbon film	4.7k		RD $1 / 4 \mathrm{PS}$ 472J
R9	Carbon film	100k		RD $1 / 4 \mathrm{PS} 104 \mathrm{~J}$
R10	Metal oxide	3.3k	$3 W$	RS3P 332J
R11	Carbon film	220k		RD1/4PS 224J
R12	Carbon film	4.7k		RD1/4PS 472J
R13	Carbon film	1.8k		RD1/4PS 182J

OTHERS

Symbol	Description		Part No.
	Fuse clip		K91-006
FU1	Fuse	300 mA	AEK-023
FU2	Fuse	500 mA	PEK-001
FU3	Fuse	100 mA	PEK-003
			PNS-001

6.4 POSITIONAL DETECTOR ASSEMBLY (PWX-006)

Parts List

RESISTORS

Symbol	Description		Part No.
R101	Carbon film	360	RD $1 / 4 \mathrm{PS} 361 \mathrm{~J}$
R102	Carbon film	360	RD1/4PS 361J
R103	Carbon film	360	RD $1 / 4 \mathrm{PS} 361 \mathrm{~J}$
R104	Carbon film	680	RD1/4PS 681J

OTHERS

Symbol	Description	Part No.
HA	Hall element	PCX-012
HB	Hall element	PCX-012
HC	Hall element	PCX-012

NOTE:
Parts indicated in green type cannot be supplied.

ACCESSORY

8. OPERATING PRINCIPLES, CIRCUIT DESCRIPTIONS

8.1 BLOCK DIAGRAM

Power Supply Ass'y PWR-822

SW ${ }_{1}$. . . . SPEED SELECTOR switch
SW_{2}. . . . Quartz Lock (OFF) switch
$V R_{1}, V R_{2}$. ADJ.
$V_{3} \ldots$... SPEED ADJ.

8.2 MOTOR OPERATION

1 Motor Construction

1. The PXM-029 is an outer-rotor brushless DC motor with 6 poles and 9 slots.
2. Motor windings are arranged in a 3 -phase Y configuration. For detection of the platter position, 3 Hall elements are mounted at 40° intervals.
3. As the motor rotates, these Hall elements generate an AC voltage dependent upon the strength and direction of the magnetic flux.
4. The bottom side of the rotor magnet possesses 200 magnetic poles. As these rotate above the speed detection plate, an AC voltage is generated which serves as the speed detection signal.
5. The inner surface of the rotor magnet possesses 6 magnetic poles. As shown in Fig. 2, these are tilted by 10° relative to the vertical axis.

Speed Detection Plate
Hall Element
Fig. 1

Fig. 2

2. Principle of Motor Rotation

1. Let us assume that the motor is at standstill, in the position shown in Fig. 3.
2. In this position, Hall element H_{A} is located next to a borderline between south and north poles, H_{B} next to a south pole, and H_{C} next to a north pole.
3. When the unit is switched on, the output voltages of the respective Hall elements will be as shown in Fig. 13-a, page 33.
4. The Hall element output is applied to the Position Signal Combination Circuit contained in IC PA2001 and utilized to control the current flowing to the motor drive coils.
For further details, see paragraph "Drive Circuit." on page 30 .
5. The output from the Hall elements undergoes waveform formation in the Position Signal Combination circuit. The resulting waveforms are shown in Fig. 13-b, page 33.
6. These composite signals are used to switch the drive current in such a way that each motor winding receives the proper current to polarize the magnetic poles for north, south, or OFF in the correct sequence.
In actual rotation, this happens as follows.
7. As the pole of coil L_{A} becomes a south pole, that of L_{B} becomes north, and L_{C}, neutral.
8. Repulsion between the S pole at L_{A} and the rotor S pole, and attraction between the $L_{B} N$ pole and the rotor S pole exert a propulsive force on the rotor.
9. As the rotor turns thrgugh 20° of arc, the output from the Hall elements changes.
10. L_{B} now enters OFF state, L_{C} becomes a N pole, and L_{A} a S pole.
11. The $\mathrm{L}_{\mathrm{c}} \mathrm{N}$ pole now attracts the rotor S pole, and the $L_{\mathrm{A}} \mathrm{S}$ pole attracts the rotor N pole. Rotation continues.
12. Correspondences between rotor positions and. coil polarities are shown in Fig. 4, a-f.

Fig. 3

Fig. 4-a

Fig. 4-b

Fig. 4-c

Fig. 4-d

Fig. 4-e

Fig. 4-f

3. Speed Detection Section

1. The speed detection plate has two rows of "detection patterns."
2. The bottom surface of the rotor is magnetized with 200 magnetic poles, and these rotate at a short distance above the speed detection plate.
3 . The output voltages obtained from the inner and outer detection patterns differ 90° in phase.
3. The output voltage from the detection patterns has a frequency of 55.5 Hz at $33-1 / 3 \mathrm{rpm}$, and of 75 Hz at 45 rpm .
4. The two signals are amplified by transistors Q1 and Q2, respectively, and then supplied to IC PD1001.

4. Functions of IC=PD1001

1. When the power is turned on, the Quartz Oscillator supplies a quartz-controlled signal of 3072 kHz .
2. This frequency is divided by $512\left(512=2^{9}\right)$, becoming 6 kHz . This signal then passes through the Quartz/RC Oscillator Switch and on to the Frequency Division Selector II.
3. The Frequency Division Selector I supplies a signal for the stroboscopic lamp. For this purpose, it divides by 80 (giving a signal of 75 Hz for 45 rpm) or by 108 (giving a signal of 55.5 Hz for $33-1 / 3 \mathrm{rpm}$).
4. Division in the Frequency Division Selector II is by 20 (giving 300 Hz for 45 rpm) or by 27 (giving 222 Hz for 33 rpm). The output signal is then passed on to the Phase Comparator and the Frequency Comparator where it is compared with the speed detection signal.
5. The speed detection signals, after amplification by Q1 and Q2 (waveforms shown in Fig. 5-a) undergo waveform formation in amplifiers AMP I and AMP II. The resultant waveforms are shown in Fig. 5-b. They then enter the Frequency Multiplication Block.

S1 Waveform

S2 Waveform

Fig. 5-a

Fig. 5-b
Composite Waveform II

Fig. 5-c
6. In the Frequency Multiplier, the 90° phase difference between the two signals is utilized to produce, in a logic circuit, a composite signal of double frequency; this is then multiplied by 2 once again, resulting in four times the original frequency. See Fig. 5-c.
7. This Speed Detection Signal $\times 4$ is then compared with the quartz-derived reference signal in the Phase and Frequency Comparators.
8. If the phase of the detection signal lags that of the reference signal, the combined PC output voltage (at pins 21 and 22 of PD-1001) will rise; conversely, if the detection signal phase leads that of the reference signal, PC output will drop. See Fig. 6-a. The former case indicates that turntable rotation is too slow. The latter case means that the turntable is rotating too fast.
9. Similarly, if the frequency of the detection signal is lower than that of the reference signal, the voltage of the combined FC output signal (pins 18 and 19 of PD1001) will drop. Conversely, this voltage will rise if the detection signal frequency is higher than the reference signal frequency. See Fig. 6-b. Again, the former case indicates slower than rated turntable rotation, while the latter case means faster than rated rotation.

Phase difference
 Phase advance

 practically zero.Pin (21)
Phase delay

Pin (20)

Composite output voltage

Output of Phase Comparator
Fig. 6-a

Composite output voltage

Output of Frequency Comparator
Fig. 6-b
10. The RC Oscillator is a 6 kHz nonstable multivibrator. With the Quartz Lock switch in OFF position, the reference signal is obtained from the RC Oscillator and passed on to the Phase
and Frequency Comparators via the Frequency Division Selector II, much in the same way as with the quartz-derived signal.
11. In QUARTZ LOCK OFF position, the frequency of the RC Oscillator can be adjusted with the SPEED ADJ control by $\pm 6 \%$.
12. This adjustment of the RC oscillator derived reference frequency results in an equivalent change in turntable speed.

5. The Active Filter

1. The output from the Phase and Frequency Comparators contains unwanted harmonics resulting from the reference frequency and the (multiplied) speed detection signal frequency $(222,300 \mathrm{~Hz})$.
2. In order to remove these harmonics, an active filter is provided in the IC PA2001 (as an RC circuit in the Operation Amplifiers I \& II).
3. To remove these harmonics with a low pass filter, it is necessary to provide a large amount of attenuation at the higher frequencies without causing major phase changes at the low frequencies.
4. For the output of the Phase Comparator, this attenuation is obtained in two steps: a $12 \mathrm{~dB} /$ oct. active filter made up of a RC circuit I and Operation Amplifier I; and a passive $6 \mathrm{~dB} /$ oct. filter consisting of R28 and C17; resulting in an overall attenuation of $18 \mathrm{~dB} /$ oct. See Fig. 7-a.
5. For the output of the Frequency Comparator, the necessary attenuation of $12 \mathrm{~dB} /$ oct. is obtained in the active filter formed by RC circuit II and Operation Amplifier II. The signal then passes through R25 and is combined with the Phase Comparator output.
6. Since the Frequency Comparator output passes through two active (and one passive) filters, its total high range attenuation amounts to 30dB/oct. See Fig. 7-b.
7. The cut-off frequency of each filter is set at 12 Hz .
8. The active filters also function as inverting amplifiers. Their output phases are inverted relative to the Phase Comparator output. The output is the supplied to the Comparator Control Circuit.

PC output

FC output

Fig. 7-a
Fig. 7-b

6. Comparator Control and Forward/Reverse Command Circuit

1. Two inputs are supplied to the Control Comparator: a) a 5 V reference voltage from the voltage stabilizer; and b) the output from the active filters, which serves as the detection signal.
2. If the turntable rotates faster than rated speed, the detection signal is higher than the 5 V reference.
3. When this happens, the Comparator Control sends a command to the Forward/Reverse Command Circuit, telling it to apply a reverse torque to the motor to slow it down.
4. Conversely, if turntable rotation is below rated speed, the detection signal voltage will be below the 5 V reference.
5. In this case, the Comparator Control indicates to the Forward/Reverse Command Circuit that forward torque must be applied to the motor to accelerate it.

7. Drive Circuit

1. Switching signals obtained from the three Hall elements and having been processed in the Position Detection Signal Formation Circuit, applied to terminals a, b and c in Fig. 9, in order to switch transistors Q2 ~ Q7.
2. These signals are step waves as shown in Fig. 10, with relative phase differences of 120° between them.

Fig. 9

Fig. 10
3. Because of the low potential at pin (a), Q2 is ON. Pin (b) is at high potential, so Q6 and Q9 are ON. Pin (c) is at standard potential - a standard bias is applied which keeps transistors Q4, Q7 and Q10 OFF.
4. A current caused by voltage V_{Cc} flows through Q2 - (2) - coil $_{L_{A}}-$ coil $L_{B}-(4)-$ Q9, causing a north pole to appear at L_{B} and a south pole at L_{A}.
5. This magnetism causes the rotor to start rotating. After 20 degrees of rotation, the signal levels at terminals a, b and c will be come as
shown in Fig. 11-b II, and the current path of the drive current is changed. After another 20 degrees of rotation, the signals become as in Fig. 11-c III, and the drive current path is changed again. This process continues, with current path changes every 20 degrees and signal levels as in Figs. 11-d IV, 11-e V, and 11-f VI, whereupon the cycle returns to 11-a and repeats.
6. Also, a control signal from the Forward/Reverse Command Block is applied to the control input terminal, and this controls the current flow through the motor windings.

Fig. 11-a

Fig. 11-b

Fig. 11-c

Fig. 11-d

Fig. 11-e

Fig. 11-f

8. Stroboscope Pulse Circuit

1. The platter has only a single row of stroboscopic markings. Switchover for 45 and 33 rpm is effected by changing the frequency of the pulse to the stroboscopic lamp.
2. From the Frequency Divider Selector I, a frequency of either 75 Hz (for 45 rpm , representing $1 / 80$ of 6000 Hz) or 55.5 Hz (for 33 rpm , representing $1 / 108$) is obtained and supplied to the transistor that drives the stroboscopic lamp.

9. Reverse Rotation Prevention

1. PXM-029 operates indiscriminately in regard to the direction of rotation. If the platter is turned slowly in the reverse direction by hand, a forward torque will be applied until the platter stops, reverses its rotation and reaches rated speed in the proper direction.
2. If, however, the rotational speed in the reverse direction is in excess of 33 or 45 rpm , the Forward/Reverse Command Block may "misread" this as simply excessive speed ("overrun") and apply a reverse torque until rated speed is attained.
3. This reverse torque will further accelerate the turntable rotation in the reverse direction. This is known as "reverse run-away."
4. To prevent this from happening, a Reverse Rotation Prevention circuit has been included.
5. This Reverse Rotation Prevention circuit consists of two flip-flops and AND gates See Fig. 12.
6 . The input for this circuit is derived from the Hall element position detection signals processed in the Reverse Rotation Prevention circuit.
6. As long as the platter is rotating in the proper direction, this pulse enters in the order B - A C , and no "reverse" command is generated.
7. If, however, the platter rotates in the reverse direction, the pulse order becomes A - B - C, and a corrective command is given to the Forward/Reverse Command Circuit.

Fig. 12

	FF ${ }_{1}$					C	AND		$\frac{\mathrm{FF}_{2}}{\mathrm{Q}}$
		S	R	Q	$\overline{\mathrm{Q}}$		1out	2out	
	B	0	1	0	1	0	0	0	-
	\downarrow								
	A	1	0	1	0	0	0	0	-
	\downarrow								
	C	0	0	1	0	1	1	0	1
	A	1	0	1	0	0	0	0	-
	\downarrow								
	B	0	1	0	1	0	0	0	-
	\downarrow								
	C	0	0	0	1	1	0	1	0

Fig. 12 Truth table

Fig. 13-b

Fig. 14

8.3 WAVEFORMS

<PWG-008>

(A)
(B)

(C)

(D)

(E)

(F)

(G)
\qquad

9. TROUBLESHOOTING GUIDE

9.1 MOTOR DOES NOT ROTATE

9.2 MOTOR RUN-AWAY

9.3 MOTOR ALTERNATES BETWEEN FORWARD AND REVERSE ROTATION

9.4 UNSTABLE ROTATION NEAR RATED SPEED

10. ADJUSTMENT PROCEDURES

1. Adjustment of PA2001 Operating Point

This adjustment is necessary whenever PA2001 has been replaced or repairs have been performed on the RC low pass filter ass'y or the power supply circuits.
As the PXM-029 utilizes a phase comparator and frequency comparator combination, the operating points of these comparators must be adjusted.

- Set unit in QUARTZ LOCK ON mode, 33 rpm .
- Unplug jumper connector from Drive Control Ass'y PWG-008.
- Adjust white potentiometer VR2 until stroboscope comes to a standstill. See Fig. 15.

Fig. 15

2. Speed Adjustment

This adjustment is needed when proper speed cannot be obtained with the SPEED ADJ control in QUARTZ LOCK OFF mode.

- Set SPEED ADJ control at mechanical center position.
- Adjust blue potentiometer VR1 on Drive Control Ass'y PWG-008 until stroboscope comes to a standstill. See Fig. 16.

Fig. 16

The following locations in the text are incorrect. Please perform the corrections shown below.

4 EXPLODED VIEW (on page 11, 12)

	Incorrect	Correct
Page 11 2-B	D.D. Motor (see page 39)	D.D Motor (see page 41)
Page 11 2-C	PART 1 (see page 11)	PART 1 (see page 13)
Page 12 5-B	PART 3 (see page 13)	PART 3 (see page 15)
Page 12 5-C	PART 2 (see page 12)	PART 2 (see page 14)
Page 12 6-D	PART 3 (see page 13)	PART 3 (see page 15)

- Please paste the following illustration below the table on page 18 (in 6-D).

DIRECT DRIVE TURNTABLE

 HGT

Additional

Service Manual

@PIONEER

Parts List of Power Supply Assembly (PWR-823)

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	2SD234
Q2	Transistor	2 SC372-Y
Q3	Transistor	$2 S C 372-Y$
Q4	Transistor	$2 \mathrm{SC} 1279-\mathrm{S}$
Q5	Transistor	$2 \mathrm{SC} 372-Y$
D1	Bridge rectifiers	PCX-010
D2	Bridge rectifiers	PCX-011
D5	Zener diode	WZ-061
D10	Diode	$1 \mathrm{~S}-1887$

CAPACITORS

Symbol	Description			Part No.
C1	Mylar	0.033	250 V	PCL-013
C2	Mylar	0.033	250 V	PCL-013
C3	Ceramic	0.01	250 V	ACG-001
C4	Electrolytic	470	50 V	CEA 471P 50
C5	Electrolytic	33	35 V	CEA 330P 35
C6	Electrolytic	100	25 V	CEA 101P 25
C7	Electrolytic	4.7	250 V	CEA 4R7P 250
C8	Electrolytic	2.2	25 V	CEB 2R2P 25

RESISTORS

Symbol	Description			Part No.
R1	Carbon film	4.7		RD1/4PS 470J
R2	Carbon film	4.7		RD $1 / 4 \mathrm{PS} 470 \mathrm{~J}$
R3	Carbon film	1.8k		RD1/4PS 182J
R4	Carbon film	1.8k		RD1⁄2PS 182J
R5	Carbon film	5.1k		RD1⁄2PS 512J
R6	Carbon film	10k		RD $1 / 4 \mathrm{PS}$ 103J
R7	Carbon film	2.7k		RD1/4PS 272J
R8	Carbon film	4.7k		RD1/4PS 472J
R9	Carbon film	100k		RD1/4PS 104J
R10	Metal oxide	3.3k	3W	RS3P 332J
R11	Carbon film	220k		RD1/4PS 224 J
R12	Carbon film	4.7k		RD1/4PS 472J
R13	Carbon film	1.8k		RD1/4PS 182J

OTHERS

Symbol	Description		Part No.
	Fuse clip		KKR-001
FU1	Fuse	315 mA	KEK-008
FU2	Fuse	500 mA	PEK-007
FU3	Fuse	100 mA	PEK-008
	Heat sink		PNS-001

