

Характеристики платы RM9361-4K

• Трансиверы AD9361

- 4 канала приёма, 4 канала передачи (попарно когерентные);
- Диапазон изменения несущих частот приёмных и передающих каналов: 70...6000 МГц;
- Диапазон изменения полосы приёмных и передающих каналов:
 0,2...56 МГц;
- Диапазон изменения коэффициента усиления приёмных каналов: не менее 67 дБ с шагом не более 1 дБ;
- Коэффициент шума приёмных каналов: не более 4 дБ в диапазоне 100...4000 МГц, при максимальном усилении;
- Выходная мощность каналов передачи: не менее 1 мВт, в диапазоне 100...4000 МГц.

• Микросхема ПЛИС Xilinx Zynq-7000 XC7Z045-2FFG676I (или XC7Z030-2FFG676I):

- 437200 (157200) триггеров;
- 900 (400) умножителей 25x18;
- 545 (265) блоков двухпортовой памяти по 36 КБит;
- Dual-core ARM Cortex-A9 CPU, тактовая частота до 800 МГц.

• Оперативная память:

- DDR3-1066, 256Mx32, суммарный объём 1 Гбайт;
- Длительность непрерывной записи демодулированного радиосигнала с полосой 56МГц: не менее 2с.

• Внешние интерфейсы:

- SMP разъемы для аналоговых сигналов;
- Ethernet 1000BASE-T;
- USB 2.0 (USB-UART);
- Встроенный JTAG программатор и отладчик с интерфейсом USB 2.0, совместимый с Xilinx ISE и Xilinx Vivado;
- 56 буферизированных линий ввода-вывода TTL.
- Питание: 9...14 В, 30 Вт.
- Габариты платы: 150х90 мм.

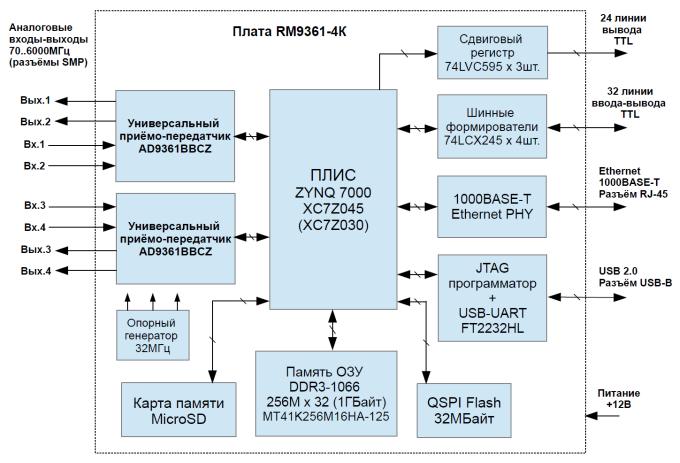


Рис.1. Структурная схема платы RM9361-4К

Рис.2. Фотография платы RM9361-4K

Внешние интерфейсы платы RM9361-4K

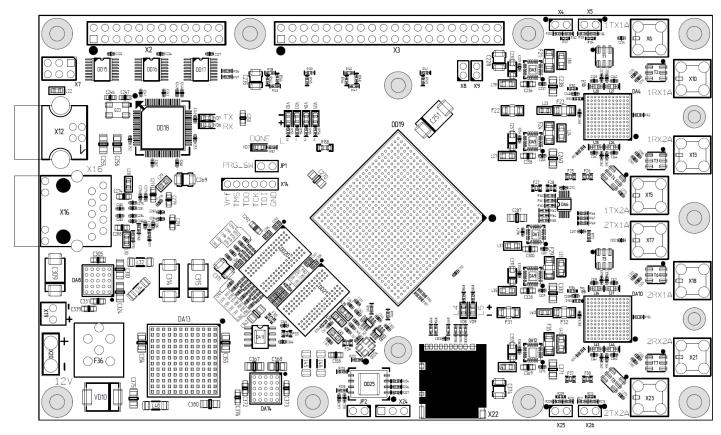


Рис. 3. Расположение элементов на плате RM9361-4К

Для подключения к другим устройствам и взаимодействия с пользователем на плате предусмотрены следующие внешние интерфейсы:

- Разъём питания +12B: **X20**;
- Разъём внутрисхемного программирования и отладки ПЛИС (JTAG): X14;
- Разъём USB 2.0 тип В (низкоскоростной USB-UART, отладочный USB-JTAG): разъём **X12**;
- Порт Ethernet 1000BASE-T: разъём **X16**;
- 40-контактный разъём расширения, на который выведено 32 внешних буферизированных логических линий ввода-вывода общего назначения: **Х3**;
- 24-контактный разъём расширения, на который выведено 20 внешних буферизированных логических выхода общего назначения: **X2**;
- 6-контактный разъём расширения, на который выведено 4 внешних буферизированных логических выхода общего назначения: **X7**;
- 4 разъёма аналоговых входов: **X10**, **X13** (когерентная пара №1) и **X18**, **X21** (когерентная пара №2). Тип разъёмов SMP, вилка прямая на плату.
- 4 разъёма аналоговых выходов: **X6**, **X15** (когерентная пара №1) и **X17**, **X23** (когерентная пара №2). Тип разъёмов SMP, вилка прямая на плату.
- разъём micro SD-карты: **X22.**

Расположение внешних интерфейсов на плате, с указанием ориентации разъёмов, показано на рисунке 3. Подробное описание интерфейсов приведено ниже.

Разъём питания (Х20)

Разъём питания представляет собой два контакта под запайку проводов. Для работы платы необходимо однополярное питание напряжением от +9 до +14 Вольт. Потребляемая мощность платы зависит от программного обеспечения ПЛИС и составляет порядка 30Вт при её максимальной загрузке. Полярность подачи питания обозначена знаками "+", "—" на плате.

Разъёмы аналоговых входов-выходов (X6, X10, X13, X15, X17, X18, X21, X23).

Аналоговые входы и выходы каждой микросхемы AD9361 выведены на 4 коаксиальных ВЧ-разъёма типа SMP, вилка прямая на плату: **X10**, **X13** - разъёмы аналоговых входов, **X6**, **X15** - разъёмы аналоговых выходов микросхемы №1; **X18**, **X21** - разъёмы аналоговых входов, **X17**, **X23** - разъёмы аналоговых выходов микросхемы №2.

Все разъёмы имеют согласованное сопротивление 50 Ом.

USB-UART + USB-JTAG Порт USB 2.0 (разъём X12)

Установленный на плате разъём USB 2.0 типа В (**X12**) предназначен для обеспечения низкоскоростного обмена информацией с ПЛИС через виртуальный COM-порт (USB-UART мост FTDI FT2232HL).

Также через этот же разъём обеспечивается внутрисхемное программирование ПЛИС и конфигурационной SPI Flash-памяти ПЛИС (S25FL256SA), а также отладка загруженного в ПЛИС ПО в режиме USB-JTAG. Встроенный USB-JTAG программатор и отладчик совместим с Xilinx ISE и Xilinx Vivado и является аналогом программатора Digilent. При подключении платы к ПК, с установленным ПО Xilinx IMPACT, Xilinx ISE или Xilinx Vivado через USB кабель, программатор автоматически обнаруживается и готов к работе.

Программатор и виртуальный COM-порт USB-UART могут работать одновременно.

Разъём JTAG ПЛИС (X14)

Разъём JTAG может использоваться для внутрисхемного программирования ПЛИС и внешней QSPI Flash-памяти ПЛИС, а также для отладки загруженного в ПЛИС ПО в качестве альтернативы встроенному в плату программатору USB-JTAG. Разъём представляет собой однорядную розетку, с шагом контактов 2 мм. Расположение и назначение контактов приведено ниже.

_	1	1	Vrf (3.3B)
	•	2	TMS
		3	TDO
		4	TCK
		5	TDI
	6	6	GND (общий)
	'	-	

Т.к. на плате имеется встроенный программатор USB-JTAG, то разъём **X14** не запаивается. Для включения возможности работы JTAG через разъём **X14**, необходимо установить (замкнуть) джампер **JP1**, расположенный рядом.

Порт Ethernet 1000BASE-T (разъём X16)

Установленный на плате разъём Ethernet предназначен для основного высокоскоростного обмена информацией с платой со скоростью до 1000Мбит/с. Поддерживаются и более низкие скорости работы: 100Мбит/с и 10Мбит/с.

40-контактный разъём расширения (ХЗ)

На плате предусмотрен разъём, на который выведены 32 логических сигнала и «земля» (GND). Все 32 логических сигнала подключены к ПЛИС через буферы 74LCX245MTC и могут быть как входами, так и выходами. При этом направление работы буферов задаётся резисторами на плате или может управляться с ПЛИС.

Посадочное место на плате представляет собой 2 ряда по 20 отверстий со стандартным шагом 2,54 мм и позволяет установить любой разъём (штыри, гнёзда, в 1 или 2 ряда, и т.д.) с таким шагом контактов.

Нумерация контактов и их назначение приведены ниже. Логические уровни сигналов соответствуют стандарту КМОП 3.3В.

	Dish.				
Nº	Направление	Цепь/вывод ПЛИС	Nº	Направление	Цепь/вывод ПЛИС
1	↔ буф.	PORTA0	2	↔ буф.	PORTA1
3	↔ буф.	PORTA2	4	↔ буф.	PORTA3
5	↔ буф.	PORTA4	6	↔ буф.	PORTA5
7	↔ буф.	PORTA6	8	↔ буф.	PORTA7
9		GND (общий)	10		GND (общий)
11	↔ буф.	PORTB0	12	↔ буф.	PORTB1
13	↔ буф.	PORTB2	14	↔ буф.	PORTB3
15	↔ буф.	PORTB4	16	↔ буф.	PORTB5
17	↔ буф.	PORTB6	18	↔ буф.	PORTB7
19		GND (общий)	20		GND (общий)
21	↔ буф.	PORTC0	22	↔ буф.	PORTC1
23	↔ буф.	PORTC2	24	↔ буф.	PORTC3
25	↔ буф.	PORTC4	26	↔ буф.	PORTC5
27	↔ буф.	PORTC6	28	↔ буф.	PORTC7
29		GND (общий)	30		GND (общий)
31	↔ буф.	PORTD0	32	↔ буф.	PORTD1
33	↔ буф.	PORTD2	34	↔ буф.	PORTD3
35	↔ буф.	PORTD4	36	↔ буф.	PORTD5
37	↔ буф.	PORTD6	38	↔ буф.	PORTD7
39		GND (общий)	40		GND (общий)

Нумерация контактов для 40-контактного разъёма расширения (ХЗ)

Логические сигналы в разъёме организованы в четыре 8-разрядных порта: PORTA, PORTB, PORTC, PORTD. Направление ввод-вывод может изменяться только для порта целиком!

24-контактный дополнительный разъём расширения (Х2)

На плате предусмотрен дополнительный разъём, на котором имеется 20 логических выхода и «земля» (GND). Все 20 логических выхода подключены к ПЛИС через сдвиговые регистры

74LVC595APW, соединённые в последовательную цепочку. Загрузка данных с ПЛИС в регистры осуществляется по SPI интерфейсу со скоростью 24МГц. Соответственно минимальное время обновления данных на логических выходах разъёма X2 составляет 1мкс.

Посадочное место на плате представляет собой 2 ряда по 12 отверстий со стандартным шагом 2,54 мм и позволяет установить любой разъём (штыри, гнёзда, в 1 или 2 ряда, и т.д.) с таким шагом контактов.

Нумерация контактов и их назначение приведены ниже. Логические уровни сигналов соответствуют стандарту КМОП 3.3В.

2	0	0	٥	0	0	0	0	0	0	0	٥	0	24 23
1	-	0	0	0		0	0	0	0	0	0	0	23

Nº	Направление	Цепь/вывод ПЛИС	Nº	Направление	Цепь/вывод ПЛИС
1	← буф.	AUX_PORT19	2	← буф.	AUX_PORT18
3	← буф.	AUX_PORT17	4	← буф.	AUX_PORT16
5		GND (общий)	6		GND (общий)
7	← буф.	AUX_PORT15	8	← буф.	AUX_PORT14
9	← буф.	AUX_PORT13	10	← буф.	AUX_PORT12
11	← буф.	AUX_PORT11	12	← буф.	AUX_PORT10
13	← буф.	AUX_PORT9	14	← буф.	AUX_PORT8
15		GND (общий)	16		GND (общий)
17	← буф.	AUX_PORT7	18	← буф.	AUX_PORT6
19	← буф.	AUX_PORT5	20	← буф.	AUX_PORT4
21	← буф.	AUX_PORT3	22	← буф.	AUX_PORT2
23	← буф.	AUX_PORT1	24	← буф.	AUX_PORT0

Нумерация контактов для 24-контактного разъёма расширения (X2)