

Пустовой И.Ф.

Влияние неоуглеродного материала «MOTUS» на материалы используемые в подшипниках коленчатых валов тепловозных дизелей.

В настоящее время существует несколько видов материалов, позволяющих увеличить срок службы двигателя за счет повышения износостойкости его деталей. Эти материалы подходят как для защиты новых двигателей, так и для двигателей, проходящих капитальный ремонт. К таким материалам относятся присадки для масла:

- мягкие металлы присадки, формирующие в процессе работы на поверхностях пар трения тонкий слой из мягких металлов, разделяющий эти поверхности, - так называемый «плакирующий» слой. («РиМет», «Lubrifilm», «Ресурс», «Реметалл», «ВМП-Авто», «Autoplus-2025 и т.д.);
- тефлоносодержащие присадки, активизирующие силы сцепления смазочного масла с поверхностью трения , такие, как «Аспектмодификатор», , «РМF-200», «Форум», «Slider-2000PTFE», «Antifriction PTFE», «Slick-50», «МикроХ-3»;
- кондиционеры металла, построенные на базе хлорпарафиновых соединений, генерирующие на поверхностях трения ультратонкий слой нового разделительного материала в процессе физико-химических превращений («ER», «FENOM» «SMT-2», «Motor Up», «Dura Lube» и т.д.).

Присадки объединяет то, что они направлены на разделение трущихся поверхностей третьим телом (мягкими металлами, длинными углеводородными цепочками, синтезированной пленкой). Принципиально по-другому воздействует материал, созданный на основе неоуглерода. Как и присадка, неоуглеродный материал создает защитный слой между трущимися телами. Однако этот слой обладает аномально низким коэффициентом трения – 0,003-0,005. Это позволяет продлить срок службы деталей двигателя по сравнению с присадками, вместе с тем совсем предотвратить износ не может. И здесь вступает в работу уникальная способность неоуглерода восстанавливать уже изношенные части двигателя за счет создания на поврежденных участках высокопрочного углеродного слоя. Этот слой не чужероден по своей природе металлу, поэтому срастается с поверхностью деталей. Присадки не обладают способностью восстанавливать изношенные детали двигателя. При обработке оборудования Мотус получается существенный экономический эффект за счет:

- Снижения удельного потребления топлива и электроэнергии до 20% и 25% соответственно;
- Увеличения срока эксплуатации смазочных материалов не менее чем на 50%;
- Увеличения срока службы в межремонтный интервал;

- Снижения стоимости планового и внепланового ремонта;
- Возможности краткосрочной эксплуатации оборудования в аварийном режиме без штатной смазки;

Чтобы материала оценить эффективность использования Мотус тепловозного двигателя была инициирована серия испытаний. В данной статье мы рассмотрим результаты первой части испытаний, где оценивалось, как применение материала Мотус влияет на износостойкость материалов, в работе подшипников коленчатого вала тепловозных используемых двигателей. Для проведения испытаний использовался MOTUS как продукт, заслуживающий внимание научно-исследовательских отраслевых институтов благодаря широкому практическому применению на транспорте и в других отраслях. Его эффективность доказана актами испытаний для легкового, грузового, пассажирского транспорта, судов, в электроэнергетике, сельском хозяйстве, коммунальном хозяйстве и ряде других сфер.

Motus разработан на основе нанотехнологий. Его производство осуществляет компания «НПХ ММТ» в Челябинске. Специалисты компании «НПХ ММТ» уделяют самое пристальное внимание качеству продукта и эффективности его использования для каждой конкретной отрасли. Для этого совместно с отраслевыми институтами разработаны методики проверки свойств антифрикционных материалов на соответствие заявленным производителем параметрам. Это позволяет адаптировать продукт к конкретной отрасли и не допустить использования поддельного некачественного продукта. Чтобы потребитель наиболее эффективно использовал **Motus** компания «НПХ ММТ» создала обучающий центр, где специалисты показывают, как правильно использовать продукт для конкретного оборудования, чтобы добиться наилучшего экономического эффекта.

Принцип работы присадок

Присадки из мягких металлов (олово, медь, серебро и др.) могут вноситься в зону трения либо в тонкодисперсном виде, либо в виде ионов в результате химических реакций компонентов смазочного масла с источником мягкого металла. [2] Ввод тонкодисперсных мягких металлов связан с двумя проблемами:

- создание устойчивой взвеси тонких частиц мягких металлов;
- обеспечение соотношения между допустимой концентрацией таких металлов в циркулирующем масле и концентрацией достаточной для обеспечения эффекта плакирования хотя бы на полный ресурс смазочного масла. [5]

В случае успешного решения этих проблем, эффективность таких присадок крайне ограничена по времени работы. Кроме того, тонкий разделительный слой мягких металлов не предохраняет поверхности от задиров в экстремальных условиях. А замена масла быстро сводит к нулю эффект от

начальной обработки. При этом даже кратковременное отсутствие присадки в масляной системе двигателя приводит к исчезновению защитного слоя особенно на пусковых режимах. Поэтому иногда наблюдаются случаи заклинивания двигателей после обработки данными препаратами.[4]

Тефлоносодержащие присадки наиболее эффективно действуют в зоне трения узлов со сравнительно низкими температурными процессами – в подшипниках коленчатого вала, в нижней части поршней. В зоне высоких температур на цилиндро-поршневой группы эффективность поверхности действия таких присадок снижается. Механизм сцепления тефлонового антифрикционного слоя с поверхностью детали механический, что определяет тефлоновых покрытий. Тефлон с поверхности трения удаляется механическим путем, в частности поршневыми кольцами в режиме пуска. Под воздействием камере сгорания тефлон высоких температур в активно разлагается. Тефлоновые присадки, активизирующие силы сцепления смазочного масла с поверхностью трения, могут быть весьма эффективными по противоизносным характеристикам. Но как и в предыдущем случае у них есть существенные недостатки:

- воздействие таких присадок продолжается до тех пор пока они присутствуют в смазочном масле в достаточной концентрации;
- такие присадки как правило не только не являются антифрикционными, но даже способны увеличивать трение;
- обычно высокие концентрации таких присадок могут влиять на реологию смазочного масла. [2]

Кондиционеры металла позволяют резко улучшить противоизносные и, особенно, противозадирные свойства базового масла, но, в силу того что носителем активного хлора в кондиционерах металлов, судя по патентам изготовителей, являются токсичные хлорированные парафины, их использование существенно ограничивается.[4]

Принцип работы нового углеродистого материала «МОТУС»

изготавливаются на основе природных силикатных минералов ультраосновных гипербазитовых пород. Такие материалы вносят структурные изменения в поверхность трения, которые способны её модифицировать в триботехнически выгодном направлении.[3] To есть помогают триботехнической системе самой «определиться», какой должна быть толщина слоя модифицированной структуры, его шероховатость и микротвердость.

Трибология – наука о трении, изнашивании и смазывании подвижных соединений машин и механизмов

НУМ – Новый Углеродистый Материал

В результате внесения НУМ в систему двигателя на деталях синтезируется новая поверхность, которая состоит из трех уровней:

- восстановленного слоя детали, который обладает общей кристаллической решеткой с металлом подложки;
- промежуточного, упругого слоя;
- внешнего, защитного слоя с аномально низким коэффициентом трения и высокой износоустойчивостью.

Основными физико-химическими преимуществами НУМ являются:

- способность создавать защитные пленки, образованные тонкодисперсными продуктами износа и самого геомодификатора в виде инициирования углеродистого защитного слоя, за счет в трибосопряжениях, микрометалургических процессов возникающих что позволяет многократно снижать скорость изнашивания узлов трения;[5]
- способность изменять характеристики поверхностей для формирования гидродинамического трения, и, следовательно, снижать механические потери;
- химическая, электрическая нейтральность и экологическая чистота природного продукта;
- при неизменном спектре режимов работы узла трения модифицированный высокоуглеродистый защитный слой сохраняется вплоть до термоциклического усталостного разрушения.[2]

Уникальным свойством НУМ является возможность восстановления узлов трения двигателей, механизмов и устройств путем восстановления физических связей поверхностного слоя с тонкодисперсной средой основного материала в смазочной среде двигателей внутреннего сгорания, узлов и механизмов. Именно это уникальное свойство НУМ наряду с более низким коэффициентом трения, чем при использовании присадок, вызывает повышенный практический интерес.

Влияние НУМ на износостойкость материалов, используемых в работе подшипников коленчатого вала тепловозных двигателей.

На предварительном этапе проводится оценка основных триботехнических свойств различных пар трения скольжения (прирабатываемости , задиростойкости и износостойкости) в среде масла , без продукта и с продуктом . На основании проведенных лабораторных испытаний делается заключение о триботехнических свойствах данного состава и о необходимости проведения дальнейших исследований.

Сущность методики оценки прирабатываемости при трении скольжения заключается в измерении контурной площади контакта системы вал-колодочка

в процессе испытания при ступенчатой нагрузке. В результате испытаний строиться зависимость площади контакта от нагрузки. Указанная зависимость имеет криволинейный участок соответствующий окончанию приработки. Значения контурной площади контакта , соответствующие окончанию приработки (S_{np}) и нагрузки в конце процесса прирпботки (P_{np}) характеризуют прирабатываемость пар трения. Чем больше (S_{np}) и чем меньше (P_{np}) тем прирабатываемость лучше. [1,7]

Сущность методики оценки задиростойкости пар трения , работающих при скольжении , состоит в испытании двух образцов при ступенчатом повышении нагрузки. Один из образцов имеет постоянную площадь трения и находится в постоянном контакте со вторым вращающимся образцом при постоянном измерении момента трения. Показателем задиростойкости является давление $(P_{\kappa p})$ на образец , которое при испытании приводит к скачкообразному повышению момента трения $(M_{\tau p})$ и коэффициента трения $(f_{\tau p})$. Чем выше $(P_{\kappa p})$ тем выше задиростойкость пары трения .[6]

Сущность методики оценки изностойкости при трения скольжения заключается в проведении весового контроля образцов до и после проведения триботехнических испытаний при нагрузке P = 10МПа в течении 40часов.

Для проведения испытаний были выбраны материалы, которые практически используются в подшипниках коленчатых валов тепловозных дизелей -баббит БК2, алюминиевый сплав AO20-1 и свинцовистая бронза Бр.ОС1-22. Баббит БК2 испытывался в паре работает в паре с высокопрочным чугуном марки ВПЧ. Бронза Бр.ОС1-22 со сталью, поверхность которых азотируется.

В качестве базового использовали дизельное масло марки М14В2. Результаты испытаний с маслом М14В2, сравнивались с результатами, полученными при добавление в масло М14В2 препарата марки «Моtus». Испытания проводились по указанным выше методикам при комбинациях пар трения.

Результаты испытаний на прирабатываемость подшипниковых сплавов показали, что «Motus» положительно влияет на прирабатываемость баббита БК2 и несколько ухудшает прирабатываемость сплава AO20-1 и Бр.ОС1-22

рис 1. Зависимость коэффициента трения от нагрузки для пары трения "чугун ВПЧ - подшипниковый сплав БК 2"

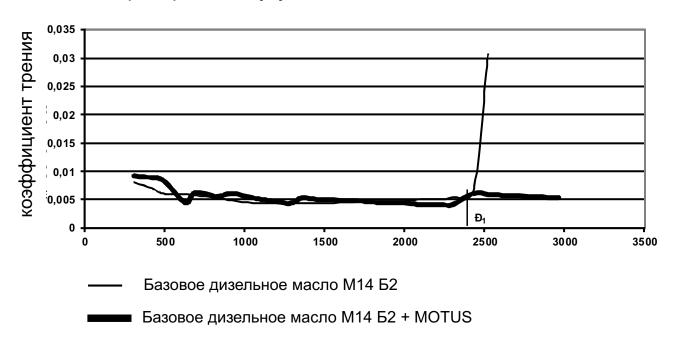


рис 2. Зависимость коэффициента трения от нагрузки для пары трения "чугун ВПЧ - подшипниковый сплав АО 20-1"

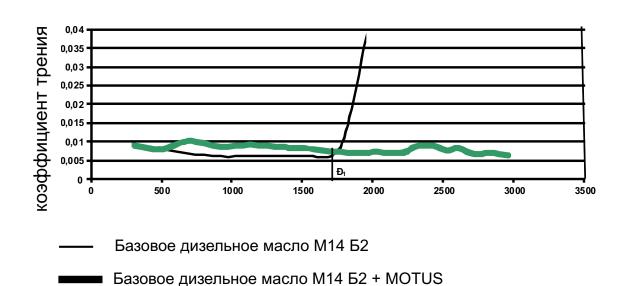


рис 3. Зависимость коэффициента трения от нагрузки для азотированная стал 38XH3MA -подшипниковый сплав БР.ОС 1-22

Влияние Motus на задиростойкость масла $M14B_2$ показано на рис. 1, 2, 3. В случае пары трения «БК2-ВПЧ» (Рис.1) для базового масла нагрузка возникновения задира составила P_1 =2400 Н. При испытании пар трения в масле содержащей Motus при задаваемых значениях предельных нагрузок задиры вообще отсутствовали. Данный факт свидетельствует о высокой задиростойкости пары трения «БК2-ВПЧ» в случае использования масла $M14B_2$ + Motus.

В случае пары трения «AO20-1 — ВПЧ» (рис.2) Мотив, введенный в масло, оказывает также положительный эффект в сравнении с базовым маслом. Нагрузка возникновения задира при базовом масле равна P_1 =1700 H, а при введении в масло Motus следов задира на всех испытанных парах (на предельных нагрузках машины трения P_1 =3000H) не было.

В случае пары трения "азотированная сталь 38ХНЗМА - сплав Бр.ОС-1-22" (см. рис.3) при испытании как в среде базового дизельного масла, так и в среде дизельного масла содержащего синтезатор металлов задиров на поверхностях трения всех образцах обнаружено не было. Однако в диапазоне нагрузок 500-1200Н(фактические условия работы пары трения в ДВС) имело место снижения коэффициента трения.

Результаты испытания на износотойкость для пары трения «БК2-ВПЧ» со смазкой $M14B_2$ и $M14B_2$ + Motus в виде гистограммы представлены на рис.4, который наглядно показывает ,что Motus в 1,4 раза увеличивает износ баббита , который сопровождается умеренным нагревом без пластической деформации поверхности трения. При этом весовой износ чугуна ВПЧ увеличивается в 2 раза.

Результаты испытаний на износ пары AO20-1- ВПЧ даны на рис.5, из которого следует, что колодочки из AO20-1 имеют износ в 6 раз меньший при испытании с маслом, содержащим Motus, чем при испытании с базовым маслом. При взвешивании колодок из AO20-1 испытанных в масле с присадкой наблюдался привес . В обоих случаях как с базовым маслом, так и с маслом, содержащим присадку, наблюдался привес роликов, в случае с базовым маслом из-за переноса с колодок частиц сплава на поверхность ролика , а привес ролика и колодки в случае с маслом содержащим синтезатор металлов за счет осаждения и приработки материала привнесенного из масла.

Весовой износ колодок из Бр.ОС-1-22 испытанных в паре с азотированной сталью 38ХНЗМА (см.рис.6), свидетельствуют о том, что при испытании масла с Motus износ снижается в 1,75 раз и обоих материалов пары трения роликов и колодок.

Необходимо отметить, что азотированная сталь способна при трении давать прирост веса на сотые доли грамма по массе за счет появления на поверхности трения окисных пленок при интенсивном нагреве в процессе длительного испытания. В данном случае этого не происходило.

Результаты испытаний на износ подшипниковых сплавов представлены ни рис. 4,5,6.

рис 4. Гистограмма износа для пары трения "чугун марки ВПЧ - подшипниковый сплав ВК 2"

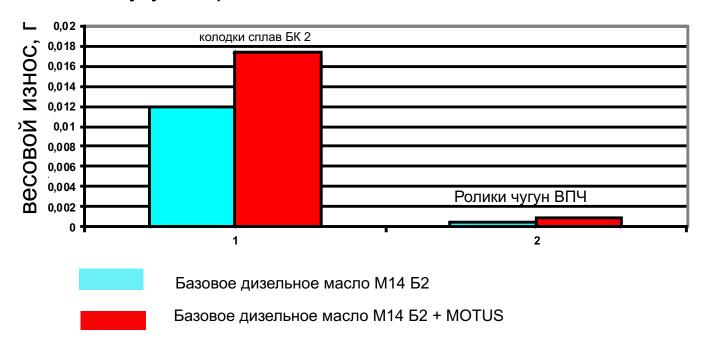


рис 5. Гистограмма износа для пары трения "чугун марки ВПЧ - подшипниковый сплав АО 20-1"

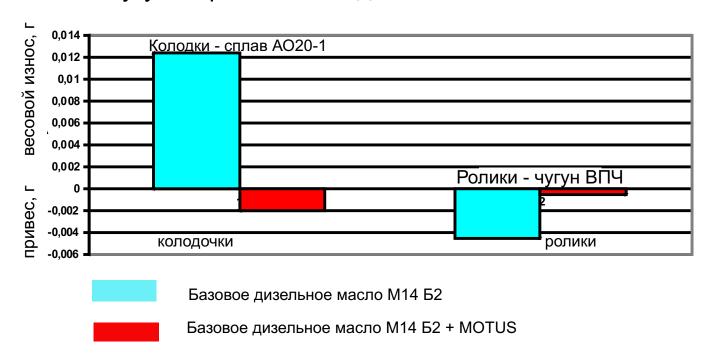
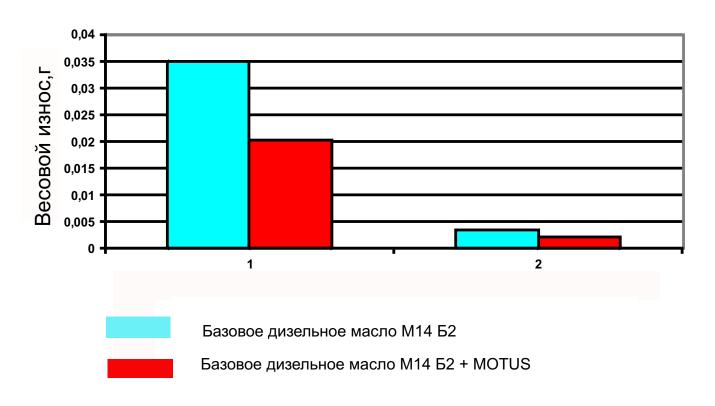



Рис 6. Гистограмма износа для пары трения "азотированная сталь 38XH3MA- подшипниковый сплав Бр.ОС-1-22"

Заключение.

Лабораторно-стендовые исследования по оценке влияния Motus в условиях трения скольжения и качения показали следующие результаты:

- 1. Дизельное масло $M14B_2$ легированное Motus, по сравнению с базовым маслом $M14B_2$, улучшает приработку всех подшипниковых сплавов : "сплав БК-2 сплав AO20-1", Бр.OC-1-22".
- 2. Дизельное масло М14В₂, легированное Motus, по сравнению с базовым маслом обладает высокими задиростойкими свойствами при испытании пар трения: "чугун ВПЧ баббит БК2", "чугун ВПЧ сплав AO20-1" и "сталь 38ХН3МА Бр.ОС-1-22".
- 3. Дизельное масло М14В₂, легированное Motus, по сравнению с базовым маслом обладает повышенными противоизносными свойствами при испытании пар трения: "чугун ВПЧ сплав AO20-1", "сталь 38ХНЗМА Бр.ОС-1-22", однако в паре трения "чугун ВПЧ БК2" получено увеличение износа баббита БК2.
- 4. Параллельно с продолжением лабораторных исследований целесообразно участие ВНИИЖТа в эксплуатационных испытаниях по оценке влияния Motus на узел трения «коленчатый вал подшипники скольжения» тепловозных дизелей.

Список использованной литературы.

- 1. В.Д. Зазуля и др. Словарь справочник по трению, износу и смазке деталей машин. г. Киев «Наука Думка» 1990г.
- 2. В.Н. Половинкин и др. Антифрикционная противоизносная добавка в смазочные материалы минерального происхождения (геомодификатор трения).
- Электронный журнал «Трение, износ и смазка», 1999г.
- 3. В.В.Зуев Использование минералов в качестве модификаторов трения. Обогащение руд. 1993г.
- 4. Ю.А. Шабанов «Очерки Современной Автохимии.» 2004г.
- 5. И.Ф. Пустовой Журнал «Индустрия» 2001 г. «Отличие РВС от присадок».
- 6. Р.М. Матвиевский, И.А.Буяновский, О.В.Лазовская. Противозадирная стойкость смазочных сред при трении в режиме граничной смазки. Издательство «Наука» г.Москва 1978г.
- 7. Н.А. Буше , В.В. Копытько Совместисоть трущихся поверхностей . Издательсво «Наука» Москва 1981г.