

AngularJS Test-driven
Development

Implement the best practices to improve your AngularJS
applications using test-driven development

Tim Chaplin

BIRMINGHAM - MUMBAI

AngularJS Test-driven Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-883-5

www.packtpub.com

www.packtpub.com

Credits

Author
Tim Chaplin

Reviewers
Md. Ziaul Haq

Nive Jayasekar

Tim Pei

Andi Smith

Commissioning Editor
Pramila Balan

Acquisition Editor
Reshma Raman

Content Development Editor
Manasi Pandire

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editors
Gladson Monteiro

Adithi Shetty

Stuti Srivastava

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Tim Chaplin lives and breathes software solutions and innovations. During the
day, he works with Fortune 100 enterprise applications, and in the evening, he
perfects his craft by contributing to and distributing open source software, writing,
and constantly looking for ways to increase his knowledge of technology and the
world. At an early age, Tim began developing software and has been hooked on
it since. Tim is an established conference speaker who has extensive experience in
developing and leading AngularJS projects. He has a wide background of JavaScript,
C#, Java, and C++ languages. Tim specializes in leading code quality and testing
throughout all his applications. After attending California State University, Chico,
he has gone on to work in Shanghai, Los Angeles, and London.

I would like to thank my wife, Pierra, for always making me think
and dream bigger. I would also like to thank my family for their
constant love and support. Pops, this one's for you babe.

About the Reviewers

Md. Ziaul Haq is a senior software engineer from Dhaka, Bangladesh, who
has been working with the oDesk core platform development team as a senior
JavaScript developer since 2011. He likes to work mostly on the frontend, though
he is a full-stack developer. JavaScript is his passion and he likes to code in it all
day long. He is well known as jquerygeek in the web community.

Md. Ziaul started his career in 2005 as a software developer. He has work experience
with UNICEF locally and internationally, where he worked with UNICEF's web
CMS. He is currently pursuing a master's degree in computer science from United
International University, Dhaka, Bangladesh.

I would like to thank my wife, Richi, and my newborn son, Arabi,
who is my inspiration.

Nive Jayasekar started programming in high school. In her last year of high
school, she won $10,500 at a Hackathon for building a mobile artificial-intelligence
app. She has interned at Facebook and LinkedIn, and will soon graduate from
Carnegie Mellon University with a degree in computer science and a minor in
machine learning. She is always interested in building game-changing products.
She has 5 years of experience building web and mobile applications using Python,
AngularJS, Java, and Objective C.

I'd like to thank the people at Packt Publishing, Leena Purkait and
Kirti Patil, for their help in producing this book.

Tim Pie is a computer science and business administration double degree student
at the University of Waterloo, Ontario. He has gained a wide range of technical skills
through past projects and internships, including cloud computing, data mining, and
full stack web development. Tim's current technical interest is focusing on building
web applications using modern web technologies, specifically HTML5 and
web components.

I'd like to thank my parents for their constant support of my
pursuits, while providing me great advice along the way.

Andi Smith (@andismith) is a senior architect who specializes in frontend
solutions at ideas and innovation agency, AKQA.

Andi has over 15 years of experience building for the Web and has worked with
clients such as Nike, Ubisoft, Sainsburys, Barclays, Heineken, and MINI. He has also
created a number of open source plugins and sites such as Grunt Responsive Images
(http://www.andismith.com/grunt-responsive-images/) and Secrets of the
Browser Developer Tools (http://devtoolsecrets.com/).

Andi maintains a blog focused on frontend development at
http://www.andismith.com/.

I would like to thank my wife, Amy, for all her love and support.

http://www.andismith.com/grunt-responsive-images/
http://devtoolsecrets.com/
http://www.andismith.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Introduction to Test-driven Development 5

An overview of TDD 5
Fundamentals of TDD 5
Measuring success 6

Breaking down the steps 6
Measure twice cut once 7

Diving in 8
Setting up the test 8
Creating a development to-do list 8
Test first 9
Making it run 9
Making it better 11

Testing techniques 11
Testing with a framework 12
Testing doubles with Jasmine spies 12

Stubbing a return value 13
Testing arguments 14

Refactoring 15
Building with a builder 16

Self-test questions 18
Summary 19

Chapter 2: The Karma Way 21
JavaScript testing tools 21

Karma 21
Protractor 22

JavaScript testing frameworks 22
Jasmine 23

Table of Contents

[ii]

Selenium 23
Mocha 24

Birth of Karma 24
The Karma difference 24
Importance of combining Karma with AngularJS 25

Installing Karma 25
Installation prerequisites 25
Configuring Karma 26

Customizing Karma's configuration 27
Confirming Karma's installation and configuration 27
Common installation/configuration issues 28

Testing with Karma 28
Confirming the Karma installation 29

Using Karma with AngularJS 30
Getting AngularJS 30

Bower 30
Installing AngularJS 31
Installing Angular mocks 32
Initializing Karma 32

Testing with AngularJS and Karma 33
A development to-do list 33
Testing a list of items 33

Test first 33
Assemble, Act, and Assert (3 A's) 34
Make it run 36
Make it better 38

Adding a function to the controller 38
Test first 38
Assemble, Act, and Assert (3 A's) 39
Make it run 39
Make it better 41

Self-test questions 41
Summary 42

Chapter 3: End-to-end Testing with Protractor 43
An overview of Protractor 43
Origins of Protractor 45

End of life 45
The birth of Protractor 46
Life without Protractor 46

Protractor installation 47
Installation prerequisites 47

Table of Contents

[iii]

Installing Protractor 48
Installing WebDriver for Chrome 48

Customizing configuration 49
Confirming installation and configuration 50
Common installation/configuration issues 51

Hello Protractor 51
TDD end-to-end 51

The pre-setup 52
The setup 52
Test first 53

Installing the test web server 53
Configuring Protractor 54
Getting down to business 54

Cleaning up the gaps 59
Async magic 59

Loading a page before test execution 60
Assertion on elements that get loaded in promises 60

TDD with Protractor 60
Self-test questions 61
Summary 62

Chapter 4: The First Step 63
Preparing the application's specification 63
Setting up the project 64

Setting up the directory 64
Setting up Protractor 65
Setting up Karma 66
Setting up http-server 67

Top-down or bottom-up approach 67
Testing a controller 68

A simple controller test setup 68
Initializing the scope 69

Bring on the comments 69
Test first 70

Assemble 70
Act 70
Assert 71

Make it run 72
Adding the module 73
Adding the input 74
Controller 74
Make it pass 76

Table of Contents

[iv]

Make it better 77
Implementing the Submit button 77

Configuring Karma 78
Test first 78
Make it run 80
Make it better 80
Back up the test chain 81
Bind the input 82

Onwards and upwards 82
Test first 82

Assemble 83
Act 83
Assert 84

Make it run 84
Fixing the unit tests 87

Make it better 87
Coupling of the test 88

Self-test questions 88
Summary 89

Chapter 5: Flip Flop 91
Fundamentals 91

Protractor locators 91
CSS locators 92
Button and link locators 92
Angular locators 93
URL location references 93

Creating a new project 93
Setting up headless browser testing for Karma 94

Preconfiguration 95
Configuration 95

Walk-through of Angular routes 95
Setting up AngularJS routes 96

Defining directions 96
Assembling the flip flop test 98
Making flip flop run 100
Making flip flop better 101

Searching the TDD way 101
Deciding on the approach 101
Walk-through of search query 101
The search query test 102
The search query HTML page 103
The search application 103

Table of Contents

[v]

Show me some results! 104
Creating the search result routes 104
Testing the search results 106

Assembling the search result test 106
Selecting a search result 106
Confirming a search result 107

Making the search result test run 108
Creating a location-aware test 109
Making the search result better 110

Confirming the route ID 110
Self-test questions 113
Summary 113

Chapter 6: Telling the World 115
Before the plunge 115

Karma configuration 115
File watching 116

Using a bottom-up approach 116
Services 116
Publishing and subscribing messages 117

Emitting 117
Testing broadcast 119

Publishing and subscribing – the good
and bad 120

The good 121
Harnessing the power of events 124

The plan 124
Rebranding 124
Seeing recently viewed items 125

Test first 125
Making the search controller run 127
Recently viewed unit test 128
Making RecentlyViewedController run 129
End-to-end testing 130

Creating a product cart 132
Publisher test first 132
Making the saveProduct test pass 134
Test for the subscriber first 134
Making the cart controller test run 136
End-to-end testing 137
Making the cart's end-to-end test pass 138

Self-test questions 139
Summary 139

Table of Contents

[vi]

Chapter 7: Give Me Some Data 141
REST – the language of the Web 141
Getting started with REST 142
Testing asynchronous calls 143

Creating asynchronous calls in Karma 144
Creating asynchronous calls in Protractor 146

Making REST requests using AngularJS 147
Testing with AngularJS REST 148

Testing the product service 148
Testing $http with Karma 149

Mocking requests with Protractor 151
Displaying products with REST 152

Unit testing product requests 152
Setting up the project 152
Karma configuration 153
Using an API builder pattern 153

The product data service 155
The product data controller 155

Assembling the product controller test 156
Getting products 157
Asserting product data results 157

Making the product data tests run 158
Testing middle-to-end 160

Test first 162
Assembling the product test 162
Getting products 162
Expecting product data results 163

Making the product data run 163
Testing end-to-end 164

Getting the product data 165
Self-test questions 165
Summary 166

Appendix A: Integrating Selenium Server with Protractor 167
Installation 167
Protractor configuration 168
Running Selenium 169
Let it run 170

Test first 170
Assemble 170
Assert 170

Make it run 170
Summary 172

Table of Contents

[vii]

Appendix B: Automating Karma Unit Testing on Commit 173
GitHub 173
Test setup 173

Test scripts 174
Setting the hook 174

Creating the hook 175
Adding a Travis configuration file 175

References 177
Appendix C: Answers 179
Index 181

Preface
The book will provide the reader with a complete guide to the test-driven
development (TDD) approach for AngularJS. It will provide step-by-step, clear
examples to continually reinforce TDD best practices. The book will look at both
unit testing with Karma and end-to-end testing with Protractor. It will not only focus
on how to use the tools, but also on understanding the reason they were built, and
why they should be used. Throughout, there will be focus on when, where, and
how to use these tools, constantly reinforcing the principles of the TDD life cycle
(test, execute, refactor).

What this book covers
This book is basically split into two parts. The initial chapters focus on the TDD
life cycle, and how Karma and Protractor fit into the life cycle and development
of an AngularJS application. As we proceed, you'll get a step-by-step approach to
AngularJS TDD using Karma and Protractor. Each of the chapters builds up on the
previous one and introduces how to test several different AngularJS components.

Chapter 1, Introduction to Test-driven Development, is an introduction to the concepts
of TDD and testing techniques.

Chapter 2, The Karma Way, explores the origins of Karma and why it is an essential
tool for any AngularJS project.

Chapter 3, End-to-end Testing with Protractor, introduces the simplicity of Protractor,
an end-to-end testing tool built specifically for AngularJS.

Chapter 4, The First Steps, covers the TDD journey and shows the fundamentals and
tools in action.

Preface

[2]

Chapter 5, Flip Flop, expands to include testing for multiple controllers, partial views,
location references, CSS, and HTML element building on the initial foundational
aspects learned in the previous chapter.

Chapter 6, Telling the World, dives into communicating across controllers, and testing
services and broadcasting.

Chapter 7, Give Me Some Data, dives into how to apply several of the concepts shown
previously, and extend them to pull data using an external API.

Appendix A, Integrating Selenium Server with Protractor, walks through setting up and
configuring Protractor to use a standalone Selenium server.

Appendix B, Automating Karma Unit Testing on Commit, covers how to set up Travis CI,
a platform for continuous integration, and setting up Karma to test your application.

Who this book is for
This book is for the developer who wants to go beyond the basic tutorials, and wants
to take the plunge into AngularJS development. This book is for the developer who
has experience with AngularJS and has walked through the basic tutorials but wants
to understand the wider context of when, why, and how to apply testing techniques
and best practices to create quality-clean code. To get the most out of this book, it is
preferred that the reader has basic understanding of HTML, JavaScript, and AngularJS.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a web page and import calculator.js for testing."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

Preface

[3]

<script src="calculator.js"></script>
</body>
</html>

Any command-line input or output is written as follows:

$ node calculator.js

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Traditionally, tests were run by having to manually launch a browser and
check for results by continually hitting the Refresh button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[4]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction to Test-driven
Development

AngularJS is at the forefront of client-side JavaScript testing. Every AngularJS
tutorial includes an accompanying test, and event test modules are part of the core
AngularJS package. The Angular team is focused on making testing fundamental
to web development.

This chapter introduces you to the fundamentals of test-driven development with
AngularJS including:

• An overview of test-driven development (TDD)
• The TDD life cycle: test first, make it run, make it better
• Common testing techniques

An overview of TDD
TDD is not used only to develop software. The fundamental principles can be seen
in many industries. This section will explore the fundamentals of TDD and how they
are applied by a tailor.

Fundamentals of TDD
Know what to code before you code. This may sound cliché, but this is essentially
what TDD gives you. TDD begins by defining expectations, then makes you meet the
expectations, and finally forces you to refine the changes after the expectations have
been met.

Introduction to Test-driven Development

[6]

Here are a couple of clear benefits of using TDD:

• Knowing before you code: A test provides a clear vision of what code needs
to do in order to be successful. Setting up tests first allows focus on only
components that have been defined in tests.

• Confidence in refactoring: Refactoring involves moving, fixing, and
changing a project. Tests protect the core logic from refactoring by ensuring
that the logic behaves independently of the code structure.

• Documentation: Tests define expectations that a particular object or function
must meet. The expectation acts as a contract, and can be used to see how
a method should or can be used. This makes the code readable and easier
to understand.

Measuring success
TDD is not just a software development practice. The fundamental principles are
shared by other craftsmen as well. One of these craftsmen is a tailor, whose success
depends on precise measurements and careful planning.

Breaking down the steps
Here are the high-level steps a tailor takes to make a suit:

1. Test first:
 ° Determining the measurements for the suit
 ° Having the customer determine the style and material they want

for their suit
 ° Measuring the customer's arms, shoulders, torso, waist, and legs

2. Making the cuts:
 ° Measuring the fabric and cut
 ° Selecting the fabric based on the desired style
 ° Measuring the fabric based on the customer's waist and legs
 ° Cutting the fabric based on the measurements

Chapter 1

[7]

3. Refactoring:
 ° Comparing the resulting product to the expected style, reviewing,

and making changes
 ° Comparing the cut and look to the customer's desired style
 ° Making adjustments to meet the desired style

4. Repeating:
 ° Test first: Determining the measurements for the pants
 ° Making the cuts: Measuring the fabric and making the cuts
 ° Refactor: Making changes based on the reviews

The preceding steps are an example of a TDD approach. The measurements must be
taken before the tailor can start cutting up the raw material. Imagine for a moment
if the tailor didn't use a test-driven approach and didn't use a measuring tape
(testing tool). It would be ridiculous if the tailor started cutting before measuring.

As a developer, do you "cut before measuring"? Would you trust a tailor without
a measuring tape? How would you feel about a developer who doesn't test?

Measure twice cut once
The tailor always starts with measurements. What would happen if the tailor made
cuts before measuring? What would happen if the fabric was cut too short? How
much extra time would go into the tailoring? Measure twice, cut once.

Software developers can choose from an endless amount of approaches to use
before starting developing. One common approach is to work off a specification.
A documented approach may help in defining what needs to be built; however,
without tangible criteria for how to meet a specification, the actual application that
gets developed maybe completely different than the specification. With a TDD
approach (test first, make it run, and make it better), every stage of the process
verifies that the result meets the specification. Think about how a tailor continues
to use a measuring tape to verify the suit throughout the process.

TDD embodies a test-first methodology. TDD gives developers the ability to start
with a clear goal and write code that will directly meet a specification. Develop like
a professional and follow the practices that will help you write quality software.

Introduction to Test-driven Development

[8]

Diving in
It is time to dive into some actual code. This walk-through will take you through
adding the multiplication functionality to a calculator. Remember the TDD life
cycle: test first, make it run, and make it better.

Setting up the test
The initial calculator is in a file called calculator.js and is initialized as an object
as follows:

var calculator = {};

The test will be run through a web browser using a basic HTML page. Create a web
page and import calculator.js to test it. Save the web page as testRunner.html.
To run the test, open a browser and run testRunner.html. Here is the code for
testRunner.html:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

<script src="calculator.js"></script>
</body>
</html>

Now that the project is set up, the next step is to create the development to-do list.

Creating a development to-do list
A development to-do list helps organize and focus your tasks. It also provides a
place to write down ideas during the development process.

Here is the initial step for creating a development to-do list:

• Add multiplication functionality: 3 * 3 = 9

The preceding list describes what needs to be done. It also provides a clear example
of how to verify multiplication: 3 * 3 = 9.

Chapter 1

[9]

Test first
Although you can write the multiplication function quickly, remember that once the
habit of TDD is set in place, it will be just as quick to write the test and code. Here are
the steps for the first test:

1. Open calculator.js.
2. Create a new function to test multiplying 3 * 3:

function multipleTest1(){

 //Test

 var result = calculator.multiply(3,3);

 //Assert Result is expected

 if (result === 9) {

 console.log('Test Passed');

 }

 else{

 console.log('Test Failed');

 }

};

The test calls a multiply function, which still needs to be defined. It then asserts that
the results are as expected by displaying a pass or fail message. Remember, in TDD,
you are looking at the use of the method and explicitly writing how it should be
used. This allows you to define the interface through a use case, as opposed to only
looking at the limited scope of the function being developed.

The next step in the TDD life cycle will be focused on making the test run.

Making it run
This step is about making the test run, just as the tailor did with the suit. The
measurements were taken during the test step, and now the application can be
molded to fit the measurements. Here are the steps to run the test:

1. Open the browser with testRunner.html.
2. Open the JavaScript developer Console window.

Introduction to Test-driven Development

[10]

The test throws an error, as shown in the following screenshot:

The error thrown is expected as the calculator application calls a function that hasn't
been created yet: calculator.multiply.

In TDD, the focus is on adding the smallest change to get a test to pass. There is no
need to actually implement the multiplication logic. This may seem unintuitive. The
point is once a passing test exists, it should always pass. When a method contains
fairly complex logic, it is easier to run a passing test against it to ensure it meets
the expectations.

What is the smallest change that can be made to make the test pass? By returning
the expected value of 9, the test should pass. Although this won't add the multiply
function, it will confirm the application wiring. In addition, after you have passed the
test, making future changes will be easy as you have to simply keep the test passing!

Now, add the multiply function and have it return the required value 9:

var calculator = {
 multiply : function(){
 return 9;
 }
};

In the browser, the JavaScript console reruns the test. The result should be as follows:

Yes! The test passed. Time to cross out the first item from the to-do list:

• Add multiplication functionality: 3 * 3 = 9

Now that there is a passing test, the next step will be to remove the hardcoded value
in the multiply function.

Chapter 1

[11]

Making it better
The refactoring step needs to remove the hardcoded return value of the multiply
function. The required logic is as follows:

var calculator = {
multiply : function(amount1,amount2){
 return amount1 * amount2;
 }
};

Rerun the tests and confirm the test passes. Excellent! Now the multiply function is
complete. Here is the full code for the calculator and test:

var calculator = {
 multiply : function(amount1,amount2){
 return amount1* amount2;
 }
};

var multipleTest1 = function (){
 var result = calculator.multiply(3,3);

 if (result === 9) {
 console.log('Test Passed');
 }
 else{
 console.log('Test Failed');
 }

};

multipleTest1();

Testing techniques
It is important to understand some fundamental techniques and approaches to
testing. This section will walk you through a couple of examples of techniques
that will be leveraged in this book. This includes:

• Testing doubles with Jasmine spies
• Refactoring
• Building patterns

Introduction to Test-driven Development

[12]

In addition, here are additional terms that will be used:

• Function under test: This is the function being tested. It is also referred to
as system under test, object under test, and so on.

• The 3 A's (Arrange, Act, and Assert): This is a technique used to set up
tests, first described by Bill Wake (http://xp123.com/articles/3a-
arrange-act-assert/). The 3 A's will be discussed further in Chapter 2,
The Karma Way.

Testing with a framework
Although a simple web page can be used to perform tests, as seen earlier in this
chapter, it is much easier to use a testing framework. A testing framework provides
methods and structures to test. This includes a standard structure to create and run
tests, the ability to create assertions/expectations, the ability to use test doubles, and
more. This book uses Jasmine as the test framework. Jasmine is a behavior-driven
testing framework. It is highly compatible with testing AngularJS applications. In
Chapter 2, The Karma Way, we will take a more in-depth look at Jasmine.

Testing doubles with Jasmine spies
A test double is an object that acts and is used in place of another object. Take a look
at the following object that needs to be tested:

var objectUnderTest = {
 someFunction : function(){}
};

Using a test double, you can determine the number of times someFunction gets
called. Here is an example:

var objectUnderTest = {
 someFunction : function(){}
};

jasmine.spyOn(objectUnderTest,'someFunction');

objectUnderTest.someFunction ();
objectUnderTest.someFunction();

console.log(objectUnderTest.someFunction.count);

http://xp123.com/articles/3a-arrange-act-assert/
http://xp123.com/articles/3a-arrange-act-assert/

Chapter 1

[13]

The preceding code creates a test double using a Jasmine spy (jasmine.spyOn). The
test double is then used to determine the number of times someFunction gets called.
A Jasmine test double offers the following features and more:

• The count of calls on a function
• The ability to specify a return value (stub a return value)
• The ability to pass a call to the underlying function (pass through)

Throughout this book, you will gain further experience in the use of test doubles.

Stubbing a return value
The great thing about using a test double is that the underlying code of a method
does not have to be called. With a test double, you can specify exactly what a
method should return for a given test. Here is an example function:

var objectUnderTest = {
 someFunction : function(){ return 'stub me!'; }
};

The preceding object (objectUnderTest) has a function (someFunction) that needs
to be stubbed. Here is how you can stub the return value using Jasmine:

jasmine.spyOn(objectUnderTest,'someFunction')
.and
.returnValue('stubbed value');

Now, when objectUnderTest.someFunction is called, stubbed value will
be returned. Here is how the preceding stubbed value can be confirmed using
console.log:

var objectUnderTest = {
 someFunction : function(){ return 'stub me!'; }
};

//before the return value is stubbed
Console.log(objectUnderTest.someFunction());
//displays 'stub me'

jasmine.spyOn(objectUnderTest,'someFunction')
.and
.returnValue('stubbed value');

//After the return value is stubbed
Console.log(objectUnderTest.someFunction());
//displays 'stubbed value'

Introduction to Test-driven Development

[14]

Testing arguments
A test double provides insights into how a method is used in an application. As an
example, a test might want to assert what arguments a method was called with or
the number of times a method was called. Here is an example function:

var objectUnderTest = {
 someFunction : function(arg1,arg2){}
};

Here are the steps to test the arguments the preceding function is called with:

1. Create a spy so that the arguments called can be captured:
jasmine.spyOn(objectUnderTest,'someFunction');

2. Then to access the arguments, do the following:
//Get the arguments for the first call of the function
var callArgs = objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);
//displays ['param1','param2']

3. Here is how the arguments can be displayed using console.log:
var objectUnderTest = {
 someFunction : function(arg1,arg2){}
};

//create the spy
jasmine.spyOn(objectUnderTest,'someFunction');

//Call the method with specific arguments
objectUnderTest.someFunction('param1','param2');

//Get the arguments for the first call of the function
var callArgs = objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);
//displays ['param1','param2']

Chapter 1

[15]

Refactoring
Refactoring is the act of restructuring, rewriting, renaming, and removing code in
order to improve the design, readability, maintainability, and overall aesthetic of a
piece of code. The TDD life cycle step of "making it better" is primarily concerned
with refactoring. This section will walk you through a refactoring example. Here is
an example of a function that needs to be refactored:

var abc = function(z){
 var x = false;
 if(z > 10)
 return true;

 return x;
}

This function works fine and does not contain any syntactical or logical issues. The
problem is that the function is difficult to read and understand. Refactoring this
function will improve the naming, structure, and definition. The exercise will remove
the masquerading complexity and reveal the function's true meaning and intention.
Here are the steps:

1. Rename the function and variable names to be more meaningful, that is,
rename x and z so that they make sense:
var isTenOrGreater = function(value){

 var falseValue = false;

 if(value > 10)

 return true;

 return falseValue;

}

2. Now, the function can easily be read and the naming makes sense.
3. Remove unnecessary complexity. In this case, the if conditional statement

can be removed completely:
var isTenOrGreater = function(value){
 return value > 10;
};

4. Reflect on the result.
At this point, the refactor is complete, and the function's purpose should
jump out at you. The remaining question that should be asked is "why does
this method exist in the first place?".

Introduction to Test-driven Development

[16]

This example only provided a brief walk-through of the steps that can be taken
to identify issues in code and how to improve them. Other examples will be used
throughout this book.

Building with a builder
The builder pattern uses a builder object to create another object. Imagine an object
with ten properties. How will test data be created for every property? Will the object
have to be recreated in every test?

A builder object defines an object to be reused across multiple tests. The following
code snippet provides an example of the use of this pattern. This example will use
builder object in the validate method:

var book = {
 id : null,
 author : null,
 dateTime : null
};

The book object has three properties: id, author, and dateTime. From a testing
perspective, you would want the ability to create a valid object, that is, one that has
all the fields defined. You may also want to create an invalid object with missing
properties, or you may want to set certain values in the object to test the validation
logic, that is, dateTime is an actual date.

Here are the steps to create a builder for the dateTime object:

1. Create a builder function:
var bookBuilder = function();

2. Create a valid object within the builder:
var bookBuilder = function(){
 var _resultBook = {
 id: 1,
 author: 'Any Author',
 dateTime: new DateTime()
 };

}

Chapter 1

[17]

3. Create a function to return the built object:
var bookBuilder = function(){
 var _resultBook = {
 id: 1,
 author: "Any Author",
 dateTime: new DateTime()
 };
 this.build = function(){
 return _resultBook;
 }
}

4. Create another function to set the _resultBook author field:
var bookBuilder = function(){
var _resultBook = {
 id: 1,
 author: 'Any Author',
 dateTime: new DateTime()
 };
 this.build = function(){
 return _resultBook;
 };
 this.setAuthor = function(author){
 _resultBook.author = author;
 };
};

5. Make the function fluent so that calls can be chained:
this.setAuthor = function(author){
 _resultBook.author = author;
 return this;
};

6. A setter function will also be created for dateTime:
this.setDateTime = function(dateTime){
 _resultBook.dateTime = dateTime;
 return this;
};

Now, bookBuilder can be used to create a new book as follows:

var builtBook = bookBuilder.setAuthor('Tim Chaplin')
.setDateTime(new Date())
.build();

Introduction to Test-driven Development

[18]

The preceding builder can now be used throughout your tests to create a single
consistent object. Here is the complete builder for your reference:

var bookBuilder = function(){
 var _resultBook = {
 id: 1,
 author: 'Any Author',
 dateTime: new DateTime()
 };

 this.build = function(){
 return _resultBook;
 };

 this.setAuthor = function(author){
 _resultBook.author = author;
 return this;
 };

 this.setDateTime = function(dateTime){
 _resultBook.dateTime = dateTime;
 return this;
 };
};

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Self-test questions
Q1. A test double is another name for a duplicate test.

1. True
2. False

Q2. TDD stands for test-driven development.

1. True
2. False

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[19]

Q3. The purpose of refactoring is to improve code quality.

1. True
2. False

Q4. A test object builder consolidates the creation of objects for testing.

1. True
2. False

Q5. The 3 A's are a sports team.

1. True
2. False

Summary
This chapter provided an introduction to TDD. It discussed the TDD life cycle
(test first, make it run, make it better) and showed how the same steps are used by
a tailor. Finally, it looked over some of the testing techniques that will be discussed
throughout this book including:

• Test doubles
• Refactoring
• Building patterns

Although TDD is a huge topic, this book is solely focused on the TDD principles and
practices to be used with AngularJS. In the next chapter, you will start the journey
and see how to set up the Karma test runner.

The Karma Way
JavaScript testing has hit the mainstream, thanks to Karma. Karma makes it seamless
to test JavaScript. AngularJS was created around testing. This chapter explores the
origins of Karma and why it has to be used in any AngularJS project. By the end of
this chapter, you will not only understand the problem that Karma solves, but also
walk through a complete example using it.

JavaScript testing tools
Knowing what the different testing tools are is half the battle. In this section, you will
learn about the two primary tools that will be discussed and used throughout the
book. They are:

• Karma: This is a test runner
• Protractor: This is an end-to-end testing framework

Karma
Before discussing what Karma is, it is best to discuss what it isn't. It isn't a
framework to write tests. It is a test runner. What this means is that Karma gives you
the ability to run tests in several different browsers in an automated way. In the past,
developers had to perform manual steps to do this, including:

1. Opening up a browser
2. Pointing the browser to the project URL
3. Running the tests
4. Confirming that all tests have passed
5. Making changes
6. Refreshing the page

The Karma Way

[22]

With Karma, automation gives the developer the ability to run a single command
and determine whether an entire test suite has passed or failed. From a TDD
perspective, this gives you the ability to find and fix failing tests quickly. Some
of the pros and cons of using Karma compared to a manual process are as follows:

Pros Cons
Ability to automate tests in multiple browsers
and devices.

Additional tool to learn, configure, and
maintain.

Ability to watch files.
Online documentation and support.
Does one thing—runs JavaScript tests—and
does it well.
Easy to integrate with a continuous integration
server.

Automating the process of testing and using Karma is extremely advantageous. In
the TDD journey through this book, Karma will be one of your primary tools.

Protractor
Protractor is an end-to-end testing tool. It allows developers to mimic user
interactions. It automates the testing of functionality and features through the
interaction of a web browser. Protractor has specific methods to assist with testing
AngularJS, but they are not exclusive to AngularJS. Some of the pros and cons of
using Protractor are as follows:

Pros Cons
Configurable to test multiple environments Documentation and examples are limited
Easy integration with AngularJS
Syntax and testing can be similar to the
testing framework chosen for unit testing

JavaScript testing frameworks
In this section, you will learn about the testing frameworks that will support you in
your TDD practices. These include:

• Jasmine
• Selenium
• Mocha

Chapter 2

[23]

Jasmine
Jasmine is a JavaScript testing framework. It can be easily integrated and run for
websites and is agnostic to AngularJS. It provides spies and other features. It can
also be run on its own without Karma. Some of the pros and cons are as follows:

Pros Cons
Default integration with Karma. No file-watching feature available when

running tests. This means that tests have
to be rerun by the user as they change.

Provides additional functions to assist
with testing, such as test spies, fakes, and
the pass-through functionality.

The learning curve can be steep for all the
Protractor methods and features.

Cleans readable syntax that allows tests to
be formatted in a way that relates to the
behavior being tested.
Integration with several output reporters.

Selenium
Selenium (http://www.seleniumhq.org/) defines itself as:

"Selenium automates browsers. That's it!"

Automation of browsers means that developers can interact with browsers easily.
They can click on buttons or links, enter data, and so on. Selenium is a powerful
toolset that, when used and set up properly, has lots of benefits; however, it can
be confusing and cumbersome to set it up. Some of the pros and cons of Selenium
are as follows:

Pros Cons
Large feature set Has to be run as a separate process
Distributed testing Several steps to configure
SaaS support through services such as Sauce
Labs
Documentation and resources available

As Protractor is a wrapper around Selenium, it won't be discussed in detail.
Protractor will be further introduced in Chapter 3, End-to-end Testing with Protractor.

http://www.seleniumhq.org/

The Karma Way

[24]

Mocha
Mocha is a testing framework originally written for Node.js applications but
supports browser testing as well. It is very similar to Jasmine and mirrors much
of its syntax. Let's discuss some of the pros and cons of Mocha:

Pros Cons
Easy to install Separate plugins/modules required for

assertions, spies, and so on
Good documentation available Additional configuration required to use it

with Karma
Has several reporters
Plugs in with several node projects

The approach of being just a test runner and not worrying about assertions and
mocking fits into the Node.js mantra—small individual modules that do one thing.
For Node.js projects, I prefer to go with Mocha. The reason is that you can add new
Node Package Manager (npm) modules for the specific plugins needed. When
working with a website, and specifically AngularJS, I prefer to use Jasmine. It
provides the features needed without having to install additional npm modules
to a non-Node.js project.

Birth of Karma
When picking up a new tool, it is important to understand where it came from and
why it was built. This section gives you some background of the origins of Karma.

The Karma difference
Karma was created by Vojtech Jína. The project was originally called testacular. In
Vojtech Jína's thesis, he discusses the design, purpose, and implementation of Karma.
In his thesis (JavasScript Test Runner, page 6, https://github.com/karma-runner/
karma/raw/master/thesis.pdf), he describes Karma as:

"...a test runner, that helps web application developers to be more productive and
effective by making automated testing simpler and faster. In fact, I have a much
higher ambition and this thesis is only a part of it - I want to promote Test Driven
Development (TDD) as "the" way to develop web applications, because I believe it
is the most effective way to develop high quality software."

https://github.com/karma-runner/karma/raw/master/thesis.pdf
https://github.com/karma-runner/karma/raw/master/thesis.pdf

Chapter 2

[25]

Karma has the ability to easily and automatically run JavaScript unit tests on real
browsers. Traditionally, tests were run by having to manually launch a browser and
check for results by continually hitting the Refresh button. This method was awkward
and often resulted in developers limiting the amount of tests that were written.

With Karma, a developer can write a test in almost any standard test framework,
choose a browser to run against, set the files to watch for changes, and bam!
Continuous automated testing. Simply check the output window for failed
or passed tests.

Importance of combining Karma with
AngularJS
Karma was built for AngularJS. Prior to Karma, there was a lack of automated testing
tools for web-based JavaScript developers.

Remember, Karma is a test runner, not a test framework. Its job is to run tests and
report which tests will pass or fail. Why is this helpful? A test framework is where
you will write your tests. Apart from doing this, you will need to be focused on
running the tests easily and seeing results. Karma easily runs tests across several
different browsers. Karma also has some other features, such as file watching,
which will be discussed further in detail later in the book.

Installing Karma
Time to start using Karma. Installations and applications are constantly changing.
The following guide is intended to be brief in the hope that you will go to the Karma
website, http://karma-runner.github.io/, and find the latest instructions.

The main focus of this section will be on the specific configuration used in this book
and not an in-depth installation guide.

Installation prerequisites
To install Karma, you need to have Node.js on your computer. Node.js runs on
Google's V8 engine and allows JavaScript to be run on several operating systems.

Developers can publish node applications and modules using npm. This allows
developers to quickly integrate applications and modules into their applications.

Karma runs and is installed through the npm package, and therefore you need Node.
js before you use or install Karma. To install Node.js, go to http://nodejs.org/ and
follow the installation instructions.

http://karma-runner.github.io/
http://nodejs.org/

The Karma Way

[26]

Assuming you have Node.js installed, type the following command in the command
prompt to install Karma:

$ npm install karma -g

The preceding command uses npm to install Karma globally using -g. What this
means is that you can use Karma on the command prompt by simply typing the
following:

$ karma -–version

By default, installing Karma will install karma-chrome-launcher and karma-jasmine
as dependencies. Ensure that these modules are installed globally as well.

Configuring Karma
Karma comes equipped with an automated way to create a configuration file. To use
the automated way, type the following command:

$ karma init

Here is a sample of the options chosen:

Chapter 2

[27]

Customizing Karma's configuration
The following instructions describe the specific configuration required to get Karma
running for the project. Customization includes the test framework (Jasmine),
browser (Chrome) to test with, and files to test. To customize the configuration,
open up karma.conf and perform the following steps:

1. Ensure that the enabled framework says jasmine using the following code:
frameworks: ['jasmine'],

2. Configure the test directory. Note that the following definition needs to
include the tests required to run along with any potential dependencies.
The directory that will hold our tests is /test/unit/:
files: [
'test/unit/**/*.js'
],

3. Set the test browser to Chrome. It will then be initialized and will run a pop
up after every test:
browsers: ['Chrome'],

Confirming Karma's installation and configuration
To confirm Karma's installation and configuration, perform the following steps:

1. Run the following command to confirm that Karma starts with no errors:
$ karma start

2. The output should be something like this:
$ INFO [karma]: Karma v0.12.16 server started at
http://localhost:9876/

3. In addition, the output should state that no test files were found:
$ WARN [watcher]: Pattern "test/unit/**/*.js" does not match
any file.

4. The output should do this along with a failed test message:
$ Chrome 35.0.1916 (Windows 7): Executed 0 of 0 ERROR
(0.016 secs / 0 secs)

The Karma Way

[28]

This is expected as no tests have been created yet. Continue to the next step if Karma
is started and you will see your Chrome browser with the following output:

Common installation/configuration issues
If Jasmine or Chrome Launcher are missing, perform the following steps:

• When running the test, an error might occur saying missing Jasmine or
Chrome Launcher. If you get this error, type the following command to
install the missing dependencies:
$ npm install karma-jasmine -g

$ npm install karma-chrome-launcher -g

• Retry the test and confirm that the errors have been resolved.

The following is what you need to do to provide permissions (sudo/administrator):

• In some cases, you might not be able to install npm_modules globally
using the –g command. This is generally due to permission issues on your
computer. The resolution is to install Karma directly in your project folder.
Use the same command without –g to do this:
$ npm install karma

• Run Karma using the relative path:
$./node_modules/karma/bin/karma --version

Now that Karma is installed and running, it's time to put it to use.

Testing with Karma
In this section, you will create a test to confirm Karma is working as expected. To do
this, perform the following steps:

1. Create the test directory. In the Karma configuration, tests were defined in
the following directory:
files: [
'test/unit/**/*.js'
],

Go ahead and create the test/unit directory.

Chapter 2

[29]

2. Create a new file named firstTest.js in the test/unit directory.
3. Write the first test as follows:

describe('when testing karma', function (){
 it('should report a successful test', function (){
 expect(true).toBeTruthy();
 });
});

4. The preceding test uses Jasmine functions and has the following properties:
 ° describe: This provides a brief string description of the things that

will be tested
 ° it: This provides a brief string of the specific assertion
 ° expect: This provides a way to assert values
 ° toBeTruthy: This is one of several properties on an expectation that

can be used to make assertions

This test has no real value other than to confirm the output of a passing test.

5. Bam! Check your console window and see that Karma has executed your
test. Your command line should say something like this:
$ INFO [watcher]: Added file "./test/unit/firstTest.js"

This output means that Karma automagically recognized that a new file was
added. The next output should say something like this:
$ Chrome 35.0.1916 (Windows 7): Executed 1 of 1 SUCCESS
(0.02 secs / 0.015 secs)

This means your test has passed!

Confirming the Karma installation
Now the initial set up and configuration of Karma is complete. Here is a review of
the steps:

• Installed Karma through the npm command
• Initialized a default configuration through the karma init command
• Configured Karma with Jasmine and a test/unit test directory
• Started Karma and confirmed it could be opened with Chrome
• Added a Jasmine test, firstTest.js, to our test/unit test directory
• Karma recognized that firstTest.js had been added to the test directory
• Karma executed our firstTest.js and reported our output

The Karma Way

[30]

With a couple of steps, you were able to see Karma running and executing tests
automatically. From a TDD perspective, you can focus on moving tests from failing
to passing without much effort. No need to refresh the browser; just check the
command output window. Keep Karma running and all your tests and files will
automatically be added and run.

In the next sections, you will see how to apply Karma with a TDD approach. If
you're OK with Karma so far and want to move on to Protractor, continue to the
next chapter.

Using Karma with AngularJS
Here, you will walk through a TDD approach to an AngularJS component. By the
end of this chapter, you should be able to:

• Feel confident about using Karma and its configuration
• Understand the basic components of a Jasmine test
• Start to understand how to integrate a TDD approach in an

AngularJS application

Getting AngularJS
An easy method for installing AngularJS into projects is to use Bower. Feel free
to install AngularJS into your project in any way you prefer. Following is a brief
description on how to install and use Bower.

Bower
Bower is a package manager for JavaScript components. Bower allows client-side
JavaScript components to be versioned and automatically downloaded into your
projects. This allows you to upgrade third-party tools and components and provide
an easy, standard way to use tools such as AngularJS, Bootstrap, and many more.

Bower installation
Bower is an npm module, just like Karma. Ensure you have Node.js installed before
you try to install Bower using the following steps:

1. Ensure you have Bower installed using this code:
$ npm install bower -g

Chapter 2

[31]

2. Initialize the bower.json configuration in the root of the project:
$ bower init

//This will create a bower.json file which contains the dependent
packages

//Answer default to all the questions.

The output should be something like what is shown in the following screenshot:

That is it. Now Bower is installed and ready to download JavaScript packages into
your project.

Installing AngularJS
Use the following command to install AngularJS using Bower:

$ bower install angular

Type the previous command in your command prompt for the directory you will
be working in. After the installation is complete, look at your directory and confirm
that a bower_componets directory was created. Inside this, there should be a folder
for AngularJS:

The Karma Way

[32]

Installing Angular mocks
Angular mocks allows you to test AngularJS components. The official definition,
which is found at https://docs.angularjs.org/api/ngMock, is as follows:

"The ngMock module provides support to inject and mock Angular services into
unit tests. In addition, ngMock also extends various core ng services such that they
can be inspected and controlled in a synchronous manner within test code."

To install Angular mocks, simply use Bower:

$ bower install angular-mocks

Initializing Karma
A karma.conf file is required to tell Karma how it should run for the application
in question. The best way to initialize it is to run the following command in the
command prompt:

$ karma init

Use the default answers. After karma.conf has been created in the current directory,
open up the configuration. The one configuration that needs to change is the
definition of the files for Karma to use. Use the following definition in the files
section, which defines the files required to run the test:

files: [
 'bower_components/angular/angular.js',
 'bower_components/angular-mocks/angular-mocks.js',
 'app/**/*.js',
 'spec/**/*.js'
],

The preceding configuration loads angular.js, JavaScript files in the app directory,
and your tests in the spec folder.

Ensure that Karma can run your configuration:

$ karma start

The command output should state something like this:

$ Chrome 35.0.1916 (Windows 7): Executed 0 of 0 ERROR
(0.01 secs / 0 secs)

That is it. Karma is now running for the first AngularJS application.

https://docs.angularjs.org/api/ngMock

Chapter 2

[33]

Testing with AngularJS and Karma
The purpose of this first test using Karma is to create a dynamic to-do list. This
walk through will follow the TDD steps we discussed in Chapter 1, Introduction to
Test-driven Development: test first, make it run, and make it better. This will allow
you to gain more experience in using TDD with AngularJS.

A development to-do list
Before you start the test, set your focus on what needs to be developed using a
development to-do list. This will allow you to organize your thoughts. Here is
the to-do list:

• Maintain a list of items:
 ° The example list consists of test, execute, and refactor

• Add an item to the list:
 ° The example list after you add the item is test, execute, refactor,

and repeat

• Remove an item from the list:
 ° The example list after you add and remove the item is test, execute,

and refactor

Testing a list of items
The first development item is to provide you with the ability to have a list of items
on a controller. The next couple of steps will walk you through the TDD process of
adding the first feature using the TDD life cycle that is test first, make it run, make
it better.

Test first
Determining where to start is often the hardest part. The best way is to remember the
3 A's (Assemble, Act, and Assert) and start with the base Jasmine template format.
The code to do this is as follows:

describe('',function(){

beforeEach(function(){
 });

The Karma Way

[34]

 it('',function(){
 });
});

• describe: This defines the main feature we are testing. The string will
explain the feature in readable terms and then the function will follow
with the test.

• beforeEach: This is the assemble step. The function defined in beforeEach
will get executed before every assert. It is best to put the test setup required
before each test in this function.

• it: This is the act and assert step. In the it section, you will perform the
action being tested, followed by some assertion. The act step doesn't have to
go into the it function. Depending on the test, it might be more suited in the
beforeEach function.

Assemble, Act, and Assert (3 A's)
Now that the template is there, we can start filling in the pieces. We will again follow
the 3 A's mantra.

The following are the two parts of the assemble section.

In the first part, we initialize the module using the following code:

...
beforeEach(function(){
 module('todo');
});
...

This code will use the Angular mocks JavaScript library to initialize the AngularJS
module being tested. We haven't defined the todo module, but we will do this after
we get a failing test.

The second part talks about the scope of TodoController. The TodoController
scope will contain the list of items on its scope variable. It is required that the test
has access to the scope of TodoController. Angular mocks will be used to get this.
Add the following code to beforeEach to get the controller's scope:

// scope –hold items on the controller
var scope = {};

beforeEach(function(){
//...

Chapter 2

[35]

//inject – access angular controllerinject(function($controller){
 //$controller – initialize controller with test scope
 $controller('TodoController',{$scope:scope});
});
//...
});

The following is a brief explanation of each of the code elements:

• scope: This variable is used to hold and test the list items on the controller.
• inject: The Angular mocks function is used to access AngularJS's

$controller. This essentially allows you to get access and inject
dependencies into AngularJS objects.

• $controller: This initializes the scope of TodoController. The test's scope
variable will now contain the controller's scope.

In the case of "act", there is no method to act on. The scope object has already been
retrieved as part of the assemble step.

In assert, there are two parts again:

• The first assertion is to ensure the TodoController scope has a list variable
defined with three items. The list variable will be used to hold the list of all
the items:
it('should define a list object',function(){
expect(scope.list).toBeDefined();
});

• The second, third, and fourth assertions will be used to confirm whether the
data in the list is in the correct order, that is, first is test, second is execute,
and third is refactor:
//Second test
it('should define a list object', function(){
expect(scope.list[0]).toEqual('test');
});
//Third test
it('should define a list object', function(){
expect(scope.list[1]).toEqual('execute');
});
//Fourth test
it('should define a list object', function(){
expect(scope.list[2]).toEqual('refactor');
});

The Karma Way

[36]

Make it run
The next step in the TDD life cycle is to make the application run and fix the code
so that the tests pass. Remember, think about the smallest components that can be
added to make the test pass by proceeding with the following steps:

1. Run Karma by typing the following command:
$ karma start

2. If you encounter [$injector:moduler] Failed to instantiate module
todo due to error, then it can be due to the following:

 ° The preceding error message is saying that the todo module hasn't
been defined. Since the error message is telling you what is required,
this is the perfect place to start. Create a new file in the app directory
named todo. The working directory should now look something
like this:

 ° Add the todo module to the beginning of your new file as follows:
angular.module('todo',[]);

 ° Review the console window where Karma is running. You should
now see a new error.

3. Error: The [ng:areq] argument TodoController is not a function,
got undefined:

 ° This error message is describing exactly what needs to be done. There
is no need to decipher error messages or stack traces. Simply update
the todo.js file so it contains an AngularJS controller as follows:
angular.module('todo',[])
.controller('TodoController',[])

 ° In the previous code, we didn't try and define the logic required;
we only added the smallest component to meet the error message.
Review the console window for the next error.

Chapter 2

[37]

4. Error: The expected undefined to be defined as follows:
 ° The new error message is again clear. We can also see that the

code has now passed up to the point of our assertion at the
following point:
expect(scope.list).toBeDefined();

 ° As there is no list on the scope, you need to add one. Update the
app/todo.js file as follows:
.controller('TodoController',['$scope',function($scope){
$scope.list = [];
}])

 ° Review the console window.

5. You should now see one of the four tests pass! This means you have
successfully used TDD and Karma to get your first test to pass. Now you
need to fix the other three. The next error is Expected undefined to
equal 'test':

 ° The error output again describes exactly what needs to happen. You
just need to initialize the array with the elements test, execute, and
run. Go to app/todo.js and add the data to the array initialization:
angular.module('todo',[])
.controller('TodoController',['$scope',function($scope){
$scope.list = ['test','execute','refactor'];
}]);

 ° Review the output in the Karma window.

6. Excellent! The output is in green and states that all the tests have passed.
The result module and controller code from this step is as follows:

//A module for the application
angular.module('todo',[])
 //A controller to manage the to-do items.controller(
 'TodoController',['$scope', function($scope){
//the initialization of items on the controller scope
$scope.list = ['test','execute','refactor'];
}]);

Now that the "make it run" step is complete, you can move on to the next step and
make it better.

The Karma Way

[38]

Make it better
Until this point, there was nothing required to directly refactor or that had been
identified in the development to-do list. A review of the development to-do list
shows that an item can be crossed out:

• View a list of to-do list items:
 ° The example list consists of test, execute, and refactor

• Add an item to a to-do-list:
 ° The example list after you add the item will consist of test, execute,

refactor, and repeat

• Remove an item from a to-do-list:
 ° The example list after you add and then remove the item will consist

of test, execute, and refactor

Next up is the requirement to add a new item to the list. The TDD rhythm will be
followed again: test first, make it run, and make it better.

Adding a function to the controller
The next task is to give the controller the ability to add items to the scope list. This
will require the addition of a method to the scope. This walk-through will follow
the same TDD steps as done previously.

Test first
Instead of creating a new file and duplicating some of the assemble steps, the
following test will be inserted under the last it method. The reason is because
the same module and controller will be used:

describe('when using a to-do list', function(){
 var scope = null;
 beforeEach(function(){
 //...
 });
 //...

 describe('',function(){

 beforeEach(function(){
 });

 it('',function(){

Chapter 2

[39]

 });
 });
});

Assemble, Act, and Assert (3 A's)
Now that the template is there, we can start filling in the gaps using the 3 A's mantra:

1. Assemble: There is no initialization or setup required, as the module and
controller scope will be inherited.

2. Act: Here, you need to act on the add method with a new item. We place
the act function into the before each function. This allows us to repeat
the same step if/when more tests are added:
beforeEach(function(){
scope.add('repeat');
});

3. Assert: Here, an item should be added to the list, and then you need
to confirm that the last item in the array is as expected:
it('should add item to last item in list',function(){
var lastIndexOfList = scope.list.length - 1;
expect(scope.list[lastIndexOfList]).toEqual('repeat');
});

Make it run
The next step in the TDD life cycle is to make it run. Remember, think about the
smallest components that can be added to make the test pass, as follows:

1. Ensure Karma is running in your console by typing in the following command:
$ karma start

2. The first error will state TypeError: undefined is not a function:
 ° The error refers to the following line of code:

scope.add('repeat');

 ° The error is telling you that the add method hasn't been defined. The
add function will need to be added to the app/todo.js code. The
controller has already been defined, so the add function needs to be
placed on the controller's scope:
angular.module('to-do',[])
.controller('TodoController',['$scope',function($scope){

The Karma Way

[40]

//...
$scope.add = function(){};
}]);

 ° Notice how the add function doesn't contain any logic. The smallest
component has been added to get the test to satisfy the error message.

 ° Review the console window for the next error.

3. Error: Expected 'refactor' to equal 'repeat':
 ° Have a look at the following expectation:

it('should add item to last item in list',function(){
 var lastIndexOfList = scope.list.length - 1;
 expect(scope.list[lastIndexOfList]).toEqual('repeat');
});

 ° The failed assertion in step 2 is telling us that based on the preceding
expectation, the expected result of repeat is not what the last item
in the list has. The smallest possible thing that can be added to make
this assertion pass is to push repeat to the end of the list in the add
function. Here is how to do this:
//...
$scope.add = function(){
 $scope.list.push('repeat');
};
//...

 ° Review the console to see what the next output says.

4. Success! All five tests have now passed.

The resulting code added to get the tests to pass is as follows:

//A module for the application
angular.module('todo',[])
 //A controller to manage the to-do items
.controller('TodoController',['$scope', function($scope){
 //the initialization of items on the controller scope
 $scope.list = ['test','execute','refactor'];

 $scope.add = function(){
 $scope.list.push('repeat');
 };
}]);

Chapter 2

[41]

Make it better
The main thing that we need to refactor is that the add function still hasn't been fully
implemented. It contains a hardcoded value, and the minute we send in a different
item into the add function, the test will fail.

Keep Karma running so we can keep passing the tests as changes are made. The
main issue with the current add method is as follows:

• It doesn't accept any parameter
• It doesn't push a parameter onto the list but uses a hardcoded value

The resultant add function should now look as follows:

$scope.add = function(item){
 $scope.list.push(item);
};

Confirm that the Karma output still displays success:

$ Chrome 35.0.1916 (Windows 7): Executed 5 of 5 SUCCESS (0.165 secs /
0.153 secs)

Self-test questions
Self-test questions will help you further test your knowledge of using TDD with
AngularJS and Karma.

Q1. How do you use Karma to create a configuration file?

1. karma config

2. karma init

3. karma –config karma.conf.js

Q2. The Jasmine test method named before gets executed before every test.

1. True
2. False

The Karma Way

[42]

Q3. Bower is used to install Karma.

1. True
2. False

Q4. The 3 A's stand for which one of these?

1. A group of super heroes
2. Assemble, Act, and Assert
3. Accept, approve, and act

Summary
In this chapter, we reviewed JavaScript testing frameworks and tools and discussed
how Vojtech Jína created Karma. We saw how to install, configure, and run Karma.
Finally, you have walked through an example of using Karma with TDD. In the next
chapter, you will learn about end-to-end testing with Protractor.

End-to-end Testing
with Protractor

Unit testing is only one aspect of testing. In this chapter, we will look at end-to-end
testing applications, through all layers of an application. You will be introduced to
Protractor, the end-to-end testing tool from the AngularJS team. We will look into
why it was created and the problems it solves. Finally, we will see how to install,
configure, and use Protractor with TDD.

An overview of Protractor
Protractor is an end-to-end testing tool that runs using Node.js and is available as an
npm package. Before talking about Protractor specifically, you need to understand
what end-to-end testing is. End-to-end testing is testing an application against all the
interconnected moving parts and layers of an application. This differs from unit tests,
where the focus is on individual components such as controllers, services, directives,
and so on. With end-to-end testing, the focus is on how the application or a module,
as a whole, works, such as confirming the click of a button does x, y, and z.

Protractor allows the end-to-end testing of an application. This includes the ability to
simulate the click of a button and interact with an application in the same way a user
would. It then allows expectations to be set based on what the user would expect. To
put this into context, think about the following user specification:

Assuming I input abc into the search box, the following should occur:

• The search button is hit
• At least one result should be received

End-to-end Testing with Protractor

[44]

The preceding specification describes a basic search feature. Nothing in the
preceding specification describes a controller, directive, or service; it only describes
the expected application behavior. If a user were to test the specification, they may
perform the following steps:

1. Point the browser to the website
2. Select the input field
3. Type abc in the input field
4. Click on the Search button
5. Confirm that the search output displays at least one result.

The structure and syntax of Protractor mirrors that of Jasmine and the tests you
wrote in Chapter 2, The Karma Way. You can think of Protractor as a wrapper around
Jasmine, with added features to support end-to-end testing. To write an end-to-end
test with Protractor, we can follow the same steps as described in the preceding
steps, but with code. Here are the steps in code:

1. Point the browser to the website:
browser.get('/');

2. Select the input field:
var inputField = element.all(by.css('input'));

3. Type abc in the input field:
inputField.setText('abc');

4. Click on the Search button:
inputField.click();

5. Find the search result details on the page:
var searchResults = element.all(by.css('#searchResult');

6. Finally, the assertion needs to be made that at least one or more search
results are available on the screen:
expect(searchResults).count() >= 1);

As a complete test, the code will be as follows:

describe('Given I input 'abc' into the search box',function(){
 //1 – Point browser to website
 browser.get('/');
 //2 – Select input field

Chapter 3

[45]

var inputField = element.all(by.css('input'));
//3 - Type abc into input field
inputField.setText('abc');
//4 - Push search button
inputField.click();

it('should display search results',function(){
 // 5 - Find the search result details
 var searchResults = element.all(by.css('#searchResult');
 //6 - Assert
 expect(searchResults).count() >= 1);
 });
});

That's it! When Protractor runs, it will open a browser, go to the website, follow the
instructions, and finally check the expectations. The trick with end-to-end testing
is having a clear vision on what the user specification is, and then translating that
specification to code.

The previous example is a high-level view of what will be described throughout this
chapter. Now that you have been introduced to Protractor, the rest of the chapter
will show how Protractor works behind the scenes, how to install it, and finally,
walk you through a complete example using TDD.

Origins of Protractor
Protractor is not the first end-to-end testing tool that the AngularJS team built. The
first tool was called Scenario Runner. In order to understand why Protractor was
built, we need to first look at its predecessor: Scenario Runner.

End of life
Scenario Runner is in maintenance mode and has reached its end of life. It has been
deprecated in place of Protractor. In this section, we will look at what Scenario
Runner was and what gaps the tool had.

End-to-end Testing with Protractor

[46]

The birth of Protractor
Julie Ralph is the primary contributor to Protractor. According to Julie Ralph, the
motivation for Protractor was based on the following experience with Angular
Scenario Runner, on another project within Google (http://javascriptjabber.
com/106-jsj-protractor-with-julie-ralph/):

We tried using the Scenario Runner. And we found that it really just couldn't do
the things that we needed to test. We needed to test things like logging in. And
your login page isn't an Angular page. And the Scenario Runner couldn't deal
with that. And it couldn't deal with things like popups and multiple windows,
navigating the browser history, stuff like that.

Based on her experience with Scenario Runner, Julie Ralph decided to create
Protractor to fill the gaps.

Protractor takes advantage of the maturity of the Selenium project, and wraps up its
methods so that it can be easily used for AngularJS projects. Remember, Protractor
is about testing through the eyes of the user. It was designed to test all layers of an
application: Web UI, backend services, persistence layer, and so on.

Life without Protractor
Unit testing is not the only testing that needs to be written and maintained. Unit
tests focus on small individual components of an application. By testing small
components, the confidence in the code and logic grows. Unit tests don't focus
on how the complete system works when interconnected.

End-to-end testing with Protractor allows the developer to focus on the complete
behavior of a feature or module. Going back to the search example, the test should
only pass if the whole user specification passes; enter data into the search box, click
on the Search button, and see the results.

Protractor is not the only end-to-end testing framework out there, but it is the
best choice for AngularJS applications. Here are a few reasons why you should
choose Protractor:

• It is documented throughout the AngularJS tutorials and examples.
• It can be written using multiple JavaScript testing frameworks, including

Jasmine and Mocha.
• It provides convenience methods for AngularJS components, including

waiting for a page to load, expectations on promises, and so on.
• It wraps Selenium methods that automatically wait for promises to

be fulfilled.

http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/

Chapter 3

[47]

• It is supported by SaaS (Software as a Service) providers such as Sauce Labs,
which is available at https://saucelabs.com/.

• It is supported and maintained by the same company that maintains
AngularJS and Google.

Protractor installation
It's time to start getting our hands dirty, and install and configure Protractor.
Installations and applications are constantly changing. The main focus will be on the
specific configuration used in this book, and not an in-depth installation guide. There
are several varying different configurations, so please review the Protractor site for
additional details. Please visit the following website to find the latest installation and
configuration guide:

http://angular.github.io/protractor/

For this book, we will only be using the chromeOnly configuration. The chromeOnly
configuration doesn't require several moving parts, and allows you to get up
to speed quickly. As your tests grow and you are required to support multiple
browsers, running tests with a Selenium server or using something like Sauce Labs
should be reviewed. Appendix A, Integrating Selenium Server with Protractor describes
how to set up a standalone Selenium server.

Installation prerequisites
Protractor has the following prerequisites:

• Node.js: Protractor is a Node.js module available using npm. The best
way to install Node.js is to follow the instructions on the official site at
http://nodejs.org/download/.

• Chrome: This is a web browser built by Google. It will be used to run
end-to-end tests in Protractor without the need for a Selenium server. Follow
the installation instructions on the official site at http://www.google.com/
chrome/browser/.

• Selenium WebDriver for Chrome: This is a tool that allows you to interact
with web applications. Selenium WebDriver is provided with the Protractor
npm module. We will walk through the instructions as we install Protractor.

https://saucelabs.com/
http://angular.github.io/protractor/
http://nodejs.org/download/
http://www.google.com/chrome/browser/
http://www.google.com/chrome/browser/

End-to-end Testing with Protractor

[48]

Installing Protractor
Here are the steps to install Protractor:

1. Once Node.js is installed and available in the command prompt, type the
following command to install Protractor in the current directory:
$ npm install protractor

The previous command uses Node's npm command to install Protractor in the
current local directory.

2. Confirm the current directory structure:

To use Protractor in the command prompt, use the relative path to the
Protractor bin directory.

3. Test that the Protractor version can be determined as follows:
$./node_modules/protractor/bin/protractor --version

Installing WebDriver for Chrome
Here are the steps to install WebDriver for Chrome:

1. To install Selenium WebDriver for Chrome, go to the webdriver-manager
executable in the Protractor bin directory that can be found at
./node_modules/protractor/bin/ and type the following:
$./node_modules/protractor/bin/webdriver-manager update

2. Confirm the directory structure.
The previous command will create a Selenium directory containing the
required Chrome driver used in the project. The node_modules directory
should now look like the following:

Chapter 3

[49]

The installation is now complete. Both Protractor and Selenium WebDriver
for Chrome have been installed. We can now move on to the configuration.

Customizing configuration
In this section, we will be configuring Protractor using the following steps:

1. Start with a standard template configuration.
Fortunately, the Protractor installation comes with some base configurations
in its installation directory. Going back to the local node_modules directory,
you should find the example Chrome configuration in the example folder:

The example directory contains example configurations. The one that we will
use is called chromeOnlyConf.js. The chromeOnly configuration will allow
us to run end-to-end tests in Chrome without the need for a Selenium server.
As discussed earlier, running a Selenium server is another option that will
not be discussed in this book.

2. Review the example configuration file:
 ° The chromeOnly parameter should be set to true, as follows:

exports.config = {
//...
 chromeOnly: true,
 //...
};

 ° The chromeDriver parameter will have to be modified to point to the
driver we installed, as follows:
exports.config = {
//...
 chromeDriver: '../selenium/chromedriver',
 //...
};

End-to-end Testing with Protractor

[50]

 ° The capabilities parameter should only specify the name of the
browser:
exports.config = {
//...
 capabilities: {
'browserName': 'chrome'
},
//...
};

 ° The final important configuration is the source file declaration:
exports.config = {
 //...
 specs: ['example_spec.js'],
 //...
};

Excellent! Now we have Protractor installed and configured.

Confirming installation and configuration
To confirm installation, Protractor requires at least one file defined in the specs
configuration section. Before adding a real test and complicating things, create an
empty file in the root directory called confirmConfigTest.js. Then, add the test
to the specs section so it looks like this:

specs: ['confirmConfigTest.js'],

To confirm that Protractor has been installed, run Protractor by going to the root of
your project directory and type:

$./node_modules/protractor/bin/protractor chromeOnlyConf.js

If everything was set up correctly and installed, you should see something similar to
this in your command prompt:

Finished in 0.0002 seconds

0 tests, 0 assertions, 0 failures

Chapter 3

[51]

Common installation/configuration issues
The following are some common issues that you might come across while installing
WebDriver for Chrome:

• Selenium not installed correctly: If the tests have errors related to
the Selenium WebDriver location, you need to ensure that you followed
the steps to update WebDriver. The update step downloads the WebDriver
components into the local Protractor installation folder. Until WebDriver
has been updated, you won't be able to reference it in the Protractor
configuration. An easy way to confirm the update is to look in the Protractor
directory and ensure that a Selenium folder exists.

• Unable to find tests: When no tests are executed by Protractor, it can be
frustrating. The best place to start is in the configuration file. Make sure the
relative path and any file names or extensions are correct.

For a more complete list, please refer to the official Protractor site at
http://angular.github.io/protractor/.

Hello Protractor
With the Protractor installation and configuration complete, you can look at writing
a real test. This section will walk you through using TDD with Protractor. At the end
of this chapter, you should be able to:

• Feel confident in using and configuring Protractor
• Understand the basic components of a Protractor test
• Start to understand how to integrate a TDD approach to end-to-end testing

TDD end-to-end
Test-driven development is not a silver bullet. It is a foundation of principles and
techniques used to improve efficiency, quality, and much more. Knowing how to
apply TDD is the first step, but knowing when to apply it is just as important.

When applying TDD, you are coupling tests to your logic and code. As a developer,
you have to make decisions on when that coupling makes sense and will be
advantageous to your project. As you work through the examples, be aware that
they show you how to apply TDD techniques. As you use these practices in your
own projects, you will need to determine the depth and coupling of the tests that
your project and specifications require.

http://angular.github.io/protractor/

End-to-end Testing with Protractor

[52]

The pre-setup
The code in this test will leverage the unit tested code from Chapter 2, The Karma Way.
You will need to copy the code to a new directory.

As a reminder, the application was a to-do application that adds and deletes items
from a list. It has a single controller, TodoController, that has a list of items and an
add method. The application didn't have any HTML or user components. We will
use a TDD approach to add the UI elements. The current code directory should be
structured as follows:

The setup
The setup will mirror the installation and configuration steps from earlier:

1. Install Protractor.
2. Update Selenium WebDriver.
3. Configure Protractor based on the example configuration.

Follow the Protractor installation and configuration steps you learned in the
previous section in a new project directory. The only difference is that the Protractor
tests should be placed in a spec/e2e directory. This will allow you to easily identify
the tests in your project structure. After creating a spec/e2e directory update, the
Protractor configuration spec section should be as follows:

exports.config = {
 //...
 specs: ['spec/e2e/**/*.js'],
 //...
};

After confirming that Protractor has been installed and configured properly, you can
start the first test.

Chapter 3

[53]

Test first
Now that Protractor has been set up, the testing can begin. End-to-end tests are slow
and touch multiple layers of the application. They also require the full application
to be set up and running in order to test. There are several techniques that we can
leverage to mock a local environment. Mocking data and APIs will be discussed in
Chapter 7, Give Me Some Data. This first end-to-end test will only have a Web UI layer.
No additional mocking will be required.

As mentioned earlier, Protractor requires a running application. This means
the website needs to be available for you to point your browser to it. A simple
approach to serving static HTTP content is to use the http-server npm module. The
http-server module is perfect for a local development environment, but probably
not suited for the final application infrastructure. Your production website might be
developed in something like Express, IIS, or Apache.

Installing the test web server
To install our test web server, we will use the http-server node module. The
advantage of a web server such as http-server is that it requires very little
configuration and can just start and run the website. Here are the steps to install
the web server:

1. Type the following command in the command line:
$ npm install http-server

2. Now create a stub index.html page at the root of the project with the basic
HTML components:
<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

</body>
</html>

3. Now run the HTTP server and ensure the page is loaded:
./node_modules/http-server/bin/http-server -p 8080

End-to-end Testing with Protractor

[54]

4. Go to http://localhost:8080. You should see a blank page get loaded,
with no errors in the command or on the web page. If you see errors, ensure
that the directory has the required index.html file. Now that you have a
working website, it is time to configure Protractor to use it.

Configuring Protractor
Protractor can be configured with a base URL for an application. By specifying a base
URL, tests will look cleaner and can be easily configured to use different URLs for
the same application. Imagine a dev, qa, and production URL that use the same tests,
but have different URLs that need to be tested.

As we will be running this locally, we will need to use http://localhost:8000 as
our base URL. Update the Protractor configuration file as follows:

baseUrl: 'http://localhost:8080/'

Getting down to business
End-to-end testing is different than unit testing. Tests will interact with different
layers of an application throughout a single scenario. You may have another team
designing the HTML elements, CSS, and so on. The development team will then
have to integrate the UI HTML into the page. The TDD approach will allow you to
create tests for separate components independently. The idea is you want to be able
test the features of the application that make sense to test. Testing everything blindly
can be a waste of time and a refactoring nightmare.

In this case, we start with a blank canvas of a page and want to test the behavior of
the primary components. We will follow the TDD life cycle (test, execute, refactor).
In the upcoming sections, we will cover the following steps:

1. Review the user specification.
2. Write down the main tasks that need to be developed.
3. Write the test for what will be developed.

Specification
The purpose of this first test is to manage a dynamic to-do list.

Chapter 3

[55]

The development to-do list
We will need a development to-do list to set our focus and organize our
development tasks. Perform the following steps:

1. View the to-do list items
 ° Example list: test, execute, refactor

2. Add an item to the to-do list
 ° Example list: test, execute, refactor, repeat

3. Remove an item from the to-do list
 ° Example list: test, execute, refactor

If you recall, in our previous example, we set up the backend module for the
to-do list application. In this case, we will focus on managing the list from the
user's perspective.

Test first
Just as we discussed with the Karma test, start with the 3 A's (Assemble, Act, Assert).
Protractor tests are written in the same Jasmine style and setup, so you don't have
to learn any new syntax. Start with the basic Jasmine template format:

describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

• describe: This defines the main feature we test. The first parameter is a
string to explain the feature and the second parameter is the function that
contains the test steps.

• beforeEach: This is the test setup and Assemble section. The function
defined in beforeEach will be executed before every Assert. This is where
we perform any setup mocks, spies, and other components needed to test.

• it: This is the Act and Assert section. In this section, you will perform the
actual action being tested, followed by an assertion.

End-to-end Testing with Protractor

[56]

Assemble, Act, Assert (3 A's)
Follow the 3 A's mantra:

• Assemble: As this is an end-to-end test, we will initialize by directing the test
to go to the page under test. In this case, the page is /. This is because we set
the base URL to be http://localhost:8080/ in the configuration file. So
the code will look like the following:
beforeEach(function(){
 browser.get('/');
});

• Act: In the first test, to view a list of to-do items, there is no button to be
clicked or action to be done in order to get the list. We should just browse
to the page and see the list of to-do items.

• Assert: This is our first failing test, which we will write using Protractor. The
test needs to determine whether the list of to-do items, that is test, execute,
and refactor, is available on the page. In AngularJS, this will be done using
ng-repeat, meaning each item in a list will be repeated with some special
HTML to display an individual item.
As Protractor is testing the actual UI, you will need to have the ability to
select HTML elements. One of the benefits of Protractor is that it wraps up
AngularJS components so that they can be easily tested.
In the preceding test, we will use the element selector with the by.repeater
selection. In our case, the first assertion will look like this:
it('',function(){
 var todoListItems = element.all(by.repeater('item in list'));
 expect(todoListItems.count()).toBe(3);
});

The first line will select the to-do list items available on the page. The second
will Assert that the item count is 3. When running the test, ensure the web
server is still running using the following command:
$./node_modules/http-server/bin/http-server -p 8080

The completed test looks as follows:

describe('',function(){
 //ASSEMBLE
 beforeEach(function(){
 //ACT
 browser.get('/');
 });

Chapter 3

[57]

 it('',function(){
 var todoListItems = element.all(by.repeater('item in list'));
 //ASSERT
 expect(todoListItems.count()).toBe(3);
 });
});

Running the test
The steps to run a test are as follows:

1. Run the Protractor test in a different command prompt, using the
following command:
$ protractor chromeOnlyConf.js

2. The output should say that AngularJS could not be found:
$ Error: Angular could not be found on the page
http://localhost:8080/ : retries looking for angular exceeded

This error indicates that the assertions failed.

3. When running the test, you should see a Chrome pop-up with the page.
You should also see that the output from the web server says something
like the following:
GET /" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36

Excellent! Now you've got a failing Protractor test, it is time to make it run.

Make it run
The next step in the TDD life cycle is to execute and fix the code so that the tests pass.
As you walk through the test, remember to use the smallest components that can be
added to make the test pass:

1. As the first error says, Angular can't be found. Add AngularJS to the
page just before the closing tag for the body as follows:
//...
 <script src="bower_components/angular/angular.js"></script>
</body>
//...

End-to-end Testing with Protractor

[58]

2. Rerun the test using the following command:
$ protractor chromeOnlyConf.js

The output should now display the following:
$ Error: Angular could not be found on the page
http://localhost:8080/ : angular never provided resume
Bootstrap

3. Since you haven't specified the application or added the todo.js page, let's
add these components to it after the AngularJS script:
//...
<body ng-app="todo">
 <script
src="bower_components/angular/angular.js"></script>
 <script src="app/todo.js"></script>
//...

4. Rerun the test using the following command:
$ protractor chromeOnlyConf.js

The output should now display that our expectations failed:
$ Expected 0 to be 3.

Great! Now there are no more execution errors in our page, only the failed
expectations on the number of list items.

5. In order to add the items to the page, we will need to add a reference to
TodoController, and then add ng-repeat for each item. The code in the
index.html page should be as follows:
<div ng-controller="TodoController">
 <ul ng-repeat="item in list">
 {{item}}

</div>

6. Rerun the test as follows:
$ protractor chromeOnlyConf.js

The output should now display that our assertion and test passed:
$ 1 test, 1 assertion, 0 failures

Chapter 3

[59]

The completed page body tag will now look as follows:

<body ng-app="todo">
<div ng-controller="TodoController">
 <ul ng-repeat="item in list">
 {{item}}

</div>

 <script src="bower_components/angular/angular.js"></script>
 <script src="app/todo.js"></script>
</body>

Make it better
There is nothing that was called out to refactor. Looking at our to-do list, we tackled
the first two items from an end-to-end perspective.

1. View the to-do-list items:
 ° Example list: test, execute, refactor

2. Add an item to a to-do-list:
 ° Example list: test, execute, refactor, repeat

3. Remove an item from a to-do-list:
 ° Example list: test, execute, refactor

I will leave the second and third items as an exercise, so that you can further
explore and practice TDD with Protractor.

Cleaning up the gaps
There are a couple of things that were discussed in this chapter that need some
further clarification. This includes the following:

• Where is the asynchronous logic?
• How to really implement TDD with end-to-end tests.

Async magic
In the preceding tests, we saw some magic that you might be questioning. Here are
some of the magic components that we glanced over:

• Loading a page before test execution
• Assertion on elements that get loaded in promises

End-to-end Testing with Protractor

[60]

Loading a page before test execution
In the previous test, we used the following code to specify that the browser should
point to the home page:

browser.get('/');

The preceding command will launch the browser and navigate to the baseUrl
location. Once the browser reaches the page, it will have to load AngularJS and then
implement the AngularJS-specific functions. Our tests don't have any wait logic, and
this is part of the beauty of Protractor with AngularJS. The waiting for page loading
is already built in the framework for you. Your tests can then be written very cleanly.

Assertion on elements that get loaded in promises
The assertions and expectations already have promise fulfillment written in them. In
the case of our test, we wrote the assertion so that it expects the count to be three:

expect(todoListItems.count()).toBe(3);

However, in reality, we may have thought that we needed to add asynchronous
testing to the assertion in order to wait for the promise to be fulfilled, something
more complicated like the following:

it('', function(done){
 var todoListItems = element.all(by.repeater('item in list'));
 todoListItems.count().then(function(count){
 expect(count).toBe(3);
 done();
 });
})

The preceding code is longer, more granular, and harder to read. Protractor has the
ability for certain elements built in to expectations to make tests more concise.

TDD with Protractor
With our first test, there is a clear distinction of end-to-end tests and unit tests. With
the unit test, we focused on strong coupling the test to the code. As an example,
our unit test spied on the scope for a specific controller, TodoController. We used
Angular mocks to initialize the scope with a variable we could then evaluate:

inject(function($controller){
 $controller('TodoController',{$scope:scope});
});

Chapter 3

[61]

In the Protractor test, we don't care about which controller we are testing and our
focus is on the user perspective of the test. We first start with the selection of a
particular element within the Document Object Model (DOM); in our case, that
element is tied to AngularJS, ng-repeat. The Assert is that the number of elements
for a specific repeater is equal to the expected count.

With the loose coupling of the end-to-end test, we can write a test that focuses on the
user specification, which initially displays three elements, and then have the freedom
to write that in the page, controllers, and so on, in any way we want.

Self-test questions
Use TDD with Protractor to develop the third development to-do list item:

Q1. Protractor uses which of the following frameworks?

1. Selenium
2. Unobtanium
3. Karma

Q2. You can install Angular mocks by running bower install angular-mocks.

1. True
2. False

Q3. What steps does the TDD life cycle, discussed in this book, consist of?
1. Test first, make it run, make it better (refactor)
2. Test, make it better (refactor), make it run
3. Make it run, test, make it better

Additionally, if you want more practice, add a functionality to the application to
remove an item from the to-do list.

End-to-end Testing with Protractor

[62]

Summary
This chapter has given you the skills necessary to install, configure, and apply TDD
principles to end-to-end testing. We have seen how we can leverage the existing
TDD life cycle (test, make it run, make it better) and techniques with Protractor.
Protractor is an important part of testing any AngularJS application. It bridges the
gap to ensure the user's specifications work as expected. When end-to-end tests are
written to the user specifications, the confidence of the application and ability
to refactor grows. In the upcoming chapters, we will see how to apply Karma
and Protractor in more depth with simple straightforward examples. The next
chapter will walk you through testing controllers, using Angular mocks, and
using Protractor to enter key strokes.

The First Step
The first step is always the hardest. This chapter provides an initial introductory
walk-through of how to use TDD to build an AngularJS application with a
controller, model, and scope. You will be able to begin the TDD journey and see the
fundamentals in action. Up to this point, this book has focused on a foundation of
TDD and the tools. Now, we will switch gears and dive into TDD with AngularJS.
This chapter will be the first step of TDD. We have already seen how to install Karma
and Protractor, in addition to small examples and a walk-through on how to apply
it. This chapter will focus on the creation of social media comments. It will also focus
on the testing associated with controllers and the use of Angular mocks to AngularJS
components in a test.

Preparing the application's specification
Create an application to enter comments. The specification of the application is
as follows:

• Given I am posting a new comment, when I click on the submit button,
the comment should be added to the to-do list

• Given a comment, when I click on the like button, the number of likes
for the comment should be increased

The First Step

[64]

Now that we have the specification of application, we can create our development
to-do list. It won't be easy to create an entire to-do list of the whole application.
Based on the user specifications, we have an idea of what needs to be developed.
Here is a rough sketch of the UI:

Submit

Comment 1

Comment 2

Comment 3

Like

Like

Like

1

0

2

Hold yourself back from jumping into the implementation and thinking about how
you will use a controller with a service, ng-repeat, and so on. Resist, resist, resist!
Although you can think of how this will be developed in the future, it is never clear
until you delve into the code, and that is where you start getting into trouble. TDD
and its principles are here to help you get your mind and focus in the right place.

Setting up the project
In previous chapters, we discussed in detail how a project should be set up,
explained the different components involved, and walked through the entire process
of testing. I will skip these details and provide a list in the following section for the
initial actions to get the project set up.

Setting up the directory
The following instructions are specific to setting up the project directory:

1. Create a new project directory.
2. Get angular into the project using Bower:

bower install angular

3. Get angular-mocks for testing using Bower:
bower install angular-mocks

4. Initialize the application's source directory:
mkdir app

Chapter 4

[65]

5. Initialize the test directory:
mkdir spec

6. Initialize the unit test directory:
mkdir spec/unit

7. Initialize the end-to-end test directory:
mkdir spec/e2e

Once the initialization is complete, your folder structure should look as follows:

Setting up Protractor
In Chapter 3, End-to-end Testing with Protractor, we discussed the full installation and
setup of Protractor. In this chapter, we will just discuss the steps at a higher level:

1. Install Protractor in the project:
$ npm install protractor

2. Update Selenium WebDriver:
$./node_modules/protractor/bin/webdriver-manager update

Make sure that Selenium has been installed.

3. Copy the example chromeOnly configuration into the root of the project:
$ cp ./node_modules/protractor/example/chromeOnlyConf.js .

4. Configure the Protractor configuration using the following steps:
1. Open the Protractor configuration.
2. Edit the Selenium WebDriver location to reflect the relative directory

to chromeDriver:
chromeDriver:
'./node_modules/protractor/selenium/chromedriver',

The First Step

[66]

3. Edit the files section to reflect the test directory:
specs: ['spec/e2e/**/*.js'],

5. Set the default base URL:
baseUrl: 'http://localhost:8080/',

Excellent! Protractor should now be installed and set up. Here is the complete
configuration:

exports.config = {
 chromeOnly: true,
 chromeDriver: './node_modules/protractor/selenium/chromedriver',

 capabilities: {
 'browserName': 'chrome'
 },

 baseUrl: 'http://localhost:8080/',

 specs: ['spec/e2e/**/*.js'],
};

Setting up Karma
The details for Karma can be found in Chapter 2, The Karma Way. Here is a brief
summary of the steps required to install and get your new project set up:

1. Install Karma using the following command:
npm install karma -g

2. Initialize the Karma configuration:
karma init

3. Update the Karma configuration:
 files: [
 'bower_components/angular/angular.js',
 'bower_components/angular-mocks/angular-mocks.js',
 'spec/unit/**/*.js'
],

Chapter 4

[67]

Now that we have set up the project directory and initialized Protractor and Karma,
we can dive into the code. Here is the complete karma.conf.js file:

module.exports = function(config) {
 config.set({

 basePath: '',
 frameworks: ['jasmine'],
 files: [
'bower_components/angular/angular.js',
 'bower_components/angular-mocks/angular-mocks.js',
 'spec/unit/**/*.js'
],
 reporters: ['progress'],
 port: 9876,
 autoWatch: true,
 browsers: ['Chrome'],
 singleRun: false
 });
};

Setting up http-server
A web server will be used to host the application. As this will just be for local
development only, you can use http-server. The http-server module is a
simple HTTP server that serves static content. It is available as an npm module.
To install http-server in your project, type the following command:

$ npm install http-server

Once http-server is installed, you can run the server by providing it with the
root directory of the web page. Here is an example:

$./node_modules/http-server/bin/http-server

Now that you have http-server installed, you can move on to the next step.

Top-down or bottom-up approach
From our development perspective, we have to determine where to start.
The approaches that we will discuss in this book are as follows:

• The bottom-up approach: With this approach, we think about the different
components we will need (controller, service, module, and so on) and then
pick the most logical one and start coding.

The First Step

[68]

• The top-down approach: With this approach, we work from the user
scenario and UI. We then create the application around the components
in the application.

There are merits to both types of approaches and the choice can be based on your
team, existing components, requirements, and so on. In most cases, it is best for you
to make the choice based on the least resistance. In this chapter, the approach of
specification is top-down, everything is laid out for us from the user scenario and
will allow you to organically build the application around the UI.

Testing a controller
Before getting into the specification, and the mind-set of the feature being delivered,
it is important to see the fundamentals of testing a controller. An AngularJS
controller is a key component used in most applications.

A simple controller test setup
When testing a controller, tests are centered on the controller's scope. The tests
confirm either the objects or methods in the scope. Angular mocks provide inject,
which finds a particular reference and returns it for you to use. When inject is used
for the controller, the controllers scope can be assigned to an outer reference for the
entire test to use. Here is an example of what this would look like:

describe('',function(){
 var scope = {};
 beforeEach(function(){
 module('anyModule');
 inject(function($controller){
 $controller('AnyController',{$scope:scope});
 });
 });
});

In the preceding case, the test's scope object is assigned to the actual scope of the
controller within the inject function. The scope object can now be used throughout
the test, and is also reinitialized before each test.

Chapter 4

[69]

Initializing the scope
In the preceding example, scope is initialized to an object {}. This is not the best
approach; just like a page, a controller might be nested within another controller.
This will cause inheritance of a parent scope as follows:

<body ng-app='anyModule'>
 <div ng-controller='ParentController'>
 <div ng-controller='ChildController'>
 </div>
 </div>
</body>

As seen in the preceding code, we have this hierarchy of scopes that the
ChildController function has access to. In order to test this, we have to initialize
the scope object properly in the inject function. Here is how the preceding scope
hierarchy can be recreated:

inject(function($controller,$rootScope){
 var parentScope = $rootScope.$new();
$controller('ParentController',{$scope:parentScope});
var childScope = parentScope.$new();
$controller('AnyController',{$scope: childScope});
});

There are two main things that the preceding code does:

• The $rootScope scope is injected into the test. The $rootScope scope is the
highest level of scope that exists.

• Each level of scope is created with the $new() method. This method creates
the child scope.

In this chapter, we will use the simplified version and initialize the scope to an
empty object; however, it is important to understand how to create the scope
when required.

Bring on the comments
Now that the setup and approach have been decided, we can start our first test. From
a testing point of view, as we will be using a top-down approach, we will write our
Protractor tests first and then build the application. We will follow the same TDD life
cycle we have already reviewed, that is, test first, make it run, and make it better.

The First Step

[70]

Test first
The scenario given is in a well-specified format already and fits our Protractor
testing template:

describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

Placing the scenario in the template, we get the following code:

describe('Given I am posting a new comment',function(){
 describe('When I push the submit button',function(){
 beforeEach(function(){
 });
 it('Should then add the comment',function(){
 });
 });
});

Following the 3 A's (Assemble, Act, Assert), we will fit the user scenario in
the template.

Assemble
The browser will need to point to the first page of the application. As the base URL
has already been defined, we can add the following to the test:

beforeEach(function(){
 browser.get('/');
});

Now that the test is prepared, we can move on to the next step, Act.

Act
The next thing we need to do, based on the user specification, is add an actual
comment. The easiest thing is to just put some text into an input box. The test for this,
again without knowing what the element will be called or what it will do, is to write
it based on what it should be.

Chapter 4

[71]

Here is the code to add the comment section for the application:

beforeEach(function(){
 ...
 var commentInput = $('input');
 commentInput.sendKeys('a comment');
});

The last assemble component, as part of the test, is to push the Submit button. This
can be easily achieved in Protractor using the click function. Even though we don't
have a page yet, or any attributes, we can still name the button that will be created:

beforeEach(function(){
 ...
 var submitButton = element.all(by.buttonText('Submit')).click();
});

Finally, we will hit the crux of the test and assert the users' expectations.

Assert
The user expectation is that once the Submit button is clicked, the comment is
added. This is a little ambiguous, but we can determine that somehow the user needs
to get notified that the comment was added. The simplest approach is to display
all comments on the page. In AngularJS, the easiest way to do this is to add an ng-
repeat object that displays all comments. To test this, we will add the following:

it('Should then add the comment',function(){
 var comments = element(by.repeater('comment in comments')).first();
 expect(comment.getText()).toBe('a comment');
});

Now, the test has been constructed and meets the user specifications. It is small and
concise. Here is the completed test:

describe('Given I am posting a new comment',function(){
 describe('When I push the submit button',function(){
 beforeEach(function(){
 //Assemble
 browser.get('/');

 var commentInput = $('input');
 commentInput.sendKeys('a comment');

The First Step

[72]

 //Act
 //Act
 var submitButton = element.all(by.buttonText('Submit')).
 click();
 });
 //Assert
 it('Should then add the comment',function(){
 var comments = element(by.repeater('comment in
 comments')).first();
 expect(comment.getText()).toBe('a comment');
 });
 });
});

Make it run
Based on the errors and output of the test, we will build our application as we go.

1. The first step to make the code run is to identify the errors. Before starting
off the site, let's create a bare bones index.html page:
<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

</body>
</html>

Already anticipating the first error, add AngularJS as a dependency in
the page:

<script type='text/javascript' src='bower_components/angular/
angular.js'></script>
</body>

2. Now, starting the web server using the following command:
$./node_modules/http-server/bin/http-server -p 8080

3. Run Protractor to see the first error:
$./node_modules/.bin/protractor chromeOnlyConf.js

Chapter 4

[73]

4. Our first error states that AngularJS could not be found:
Error: Angular could not be found on the page
http://localhost:8080/ : angular never provided
resumeBootstrap

This is because we need to add ng-app to the page. Let's create a module and
add it to the page.

The complete HTML page now looks as follows:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

 <script src="bower_components/angular/angular.js"></script>
</body>
</html>

Adding the module
The first component that you need to define is an ng-app attribute in the index.html
page. Use the following steps to add the module:

1. Add ng-app as an attribute to the body tag:
<body ng-app='comments'>

2. Now, we can go ahead and create a simple comments module and add it to a
file named comments.js:
angular.module('comments',[]);

3. Add this new file to index.html:
<script src='app/commentController.js'></script>

4. Rerun the Protractor test to get the next error:
$ Error: No element found using locator:
By.cssSelector('input')

The test couldn't find our input locator. You need to add the input to the page.

The First Step

[74]

Adding the input
Here are the steps you need to follow to add the input to the page:

1. All we have to do is add a simple input tag to the page:
<input type='text' />

2. Run the test and see what the new output is:
$ Error: No element found using locator:
by.buttonText('Submit')

3. Just like the previous error, we need to add a button with the
appropriate text:
<button type='button'>Submit</button>

4. Run the test again and the next error is as follows:
$ Error: No element found using locator: by.repeater
('comment in comments')

This appears to be from our expectation that a submitted comment will be available
on the page through ng-repeat. To add this to the page, we will use a controller to
provide the data for the repeater.

Controller
As we mentioned in the preceding section, the error is because there is no comments
object. In order to add the comments object, we will use a controller that has an array of
comments in its scope. Use the following steps to add a comments object in the scope:

1. Create a new file in the app directory named commentController.js:
angular.module('comments')
.controller('CommentController',['$scope',
function($scope){
 $scope.comments = [];
 }])

2. Add it to the web page after the AngularJS script:
<script src='app/commentController.js'></script>

3. Now, we can add commentController to the page:
<div ng-controller='CommentController'>

4. Then, add a repeater for the comments as follows:
<ul ng-repeat='comment in comments'>
 {{comment}}

Chapter 4

[75]

5. Run the Protractor test and let's see where we are:
$ Error: No element found using locator: by.repeater('comment in
comments')

Hmmm! We get the same error.

6. Let's look at the actual page that gets rendered and see what's going on.
In Chrome, go to http://localhost:8080 and open the console to see the
page source (Ctrl + Shift + J). You should see something like what's shown
in the following screenshot:

Notice that the repeater and controller are both there; however, the repeater
is commented out. Since Protractor is only looking at visible elements, it
won't find the repeater.

7. Great! Now we know why the repeater isn't visible, but we have to fix it. In
order for a comment to show up, it has to exist on the controller's comments
scope. The smallest change is to add something to the array to initialize it as
shown in the following code snippet:
.controller('CommentController',['$scope',function($scope){
 $scope.comments = ['anything'];
}]);

8. Now run the test and we get the following:
$ Expected 'anything' to be 'a comment'.

The First Step

[76]

Wow! We finally tackled all the errors and reached the expectation. Here is what the
HTML code looks like so far:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body ng-app='comments'>
 <div ng-controller='CommentController'>
 <input type='text' />

 <li ng-repeat='comment in comments'>
 {{comment.value}}

 </div>

<script src='bower_components/angular/angular.js'></script>
<script src='app/comments.js'></script>
<script src='app/commentController.js'></script>
</body>
</html>

The comments.js module looks as follows:

angular.module('comments',[]);

Here is commentController.js:

angular.module('comments')
 .controller('CommentController',['$scope', function($scope){
 $scope.comments = [];
 }])

Make it pass
With TDD, you want to add the smallest possible component to make the test
pass. Since we have hardcoded, for the moment, the comments to be initialized
to anything, change anything to a comment; this should make the test pass.
Here is the code to make the test pass:

angular.module('comments')
.controller('CommentController',['$scope', function($scope){

Chapter 4

[77]

 $scope.comments = ['a comment'];
}]);
…

Run the test, and bam! We get a passing test:

$ 1 test, 1 assertion, 0 failures

Wait a second! We still have some work to do. Although we got the test to pass,
it is not done. We added some hacks just to get the test passing. The two things
that stand out are:

• Clicking on the Submit button, which really doesn't have any functionality
• Hardcoded initialization of the expected value for a comment

The preceding changes are critical steps we need to perform before we move
forward. They will be tackled in the next phase of the TDD life cycle, that is,
make it better (refactor).

Make it better
The two components that need to be reworked are:

• Adding behavior to the Submit button
• Removing hardcoded value of the comments

Implementing the Submit button
The Submit button needs to actually do something. We were able to sidestep the
implementation by just hardcoding the value. Using our tried and trusted TDD
techniques, switch to an approach focused on unit testing. So far, the focus has been
on the UI and pushing changes to the code. We haven't written a single unit test.

For this next bit of work, we will switch gears and focus on driving the development
of the Submit button through tests. We will be following the TDD life cycle (test first,
make it run, make it better).

The First Step

[78]

Configuring Karma
We did something very similar for the to-do list application in Chapter 2, The Karma
Way. I won't spend as much time diving into the code, so please review the previous
chapters for a deeper discussion on some of the attributes. Here are the steps you
need to follow to configure Karma:

1. Update the files section with the added files:
 files: [
 ...
 'app/comments.js',
 'app/commentController.js',
 ...
],

2. Start Karma:
$ karma start

3. Confirm that Karma is running:
$ Chrome 36.0.1985 (Windows 7): Executed 1 of 1 SUCCESS
(0.018 secs / 0.015 secs)

Test first
Let's first start with a new file in the spec/unit folder called comments.js. We will
use the base template:

describe('', function(){
 beforeEach(function(){
 });
 it('', function(){
 });
});

According to the specification, when the Submit button is clicked, it needs to add
a comment. We will need to fill in the blanks of the three components of a test
(Assemble, Act, Assert).

Chapter 4

[79]

Assemble
The behavior will need to be part of a controller for the frontend to use it. The object
under test in this case is the controller's scope object; we will need to add this to the
assemble of this test. To wire up the AngularJS controller we need to initialize the
module and then inject the CommentController scope into the test. As we did in
Chapter 2, The Karma Way, we will do the same in the following code:

var scope = {};
beforeEach(function(){
 module('comments');
 inject(function($controller){
 $controller('CommentController',{$scope:scope});
 });
 ...
})

Now, the controller's scope object, which is under test, is available to the test.

Act
The specification determines that we need to call a add method in the scope object.
Add the following code to the beforeEach section of the test:

beforeEach(function(){
 …
 scope.add('any Comment');
});

Now for the assertion.

Assert
Assert that the comment items in the scope object now contain any comment as the
first element. Add the following code to the test:

it('',function(){
 expect(scope.comments[0]).toBe('any comment');
});

Save the file and let's move on to the next step of the life cycle and make it
run (execute).

The First Step

[80]

Make it run
Now that we have most of the test prepared, we need to make the test pass. Looking
at the output of the console where Karma is running, we see the following:

$ TypeError: undefined is not a function...unit/comments.js:4:9

Looking at the line number, that is 4:9, of our unit test, we see that this is the add
function. Let's go ahead and put in an add function into the controller's scope object
using the following steps:

1. Open the controller scope and create a function named add:
$scope.add = function(){}

2. Check Karma's output and let's see where we are:
$ Expected 'a comment' to be 'any comment'.

3. Now, we have hit the expectation. Remember to think of the smallest change
to get this to work. Modify the add function to set the $scope.comments
array to any comment when called:
$scope.add = function(){
 $scope.comments.unshift('any comment');
};

Unshift is a standard JavaScript function that adds an item
to the front of an array.

4. When we check Karma's output, we see the following:
$ Chrome 36.0.1985 (Windows 7): Executed 1 of 1 SUCCESS

Success! The test passes, but again needs some work. Let's move on to the next stage
and make it better (refactor).

Make it better
The main point that needs to be refactored is the add function. It doesn't take any
arguments! This should be straightforward to add, and simply confirm that the test
still runs. Update the add function of CommentController.js to take an argument
and use that argument to add to the comments array:

$scope.add = function(commentToAdd){
 $scope.comments.unshift(commentToAdd);
};

Chapter 4

[81]

Check the output window of Karma and ensure that the test still passes. The
complete unit test looks as follows:

describe('',function(){
 var scope = {};
 beforeEach(function(){
 module('comments');
 inject(function($controller){
 $controller('CommentController', {$scope:scope});
 });

 scope.add('any comment');
 });

 it('',function(){
 expect(scope.comments[0]).toBe('any comment');
 })
});

The CommentController file now looks as follows:

angular.module('comments')
 .controller('CommentController', ['$scope', function($scope){
 $scope.comments = [];
 $scope.add = function(commentToAdd){
 $scope.comments.unshift(newComment);
 };
}]);

Back up the test chain
We completed the unit test and addition of the add function. Now we can add
the function to specify the behavior of the Submit button. The way to link the add
method to the button is to to use the ng-click attribute. The steps to add behavior
to the Submit button are as follows:

1. Open the index.html page and link it as follows:
<button type="button" ng-click="add('a comment')">
Submit</button>

Warning! Is the value hardcoded? Well, again, we want to do the smallest
change and ensure that the test still passes. We will work through our refactors
until the code is how we want it, but instead of a big bang approach, we want
to make small incremental changes.

The First Step

[82]

2. Now let's rerun the Protractor test and ensure that it still passes.
The output says it passes, and we are okay. The hardcoded value
wasn't removed from the comments. Let's go ahead and remove that
now. The CommentsController file should now look as follows:
$scope.comments = [];

3. Run the test and see that we still get a passing test.

Now the last thing we need to mop up is the hardcoded value in ng-click.
The comment being added should be determined by the input in the comment
input text.

Bind the input
Here are the steps you need to follow to bind the input:

1. To be able to bind the input into something meaningful, add an ng-model
attribute to the input tag:
<input type='text' ng-model='newComment'/>

2. Then, in the ng-click attribute, simply use the newComment model as
the input:
<button type='button' ng-click='add(newComment)'>
Submit</button>

Run the Protractor test and confirm that everything has passed and is good to go.

Onwards and upwards
Now that we have the first specification working end-to-end and unit tested, we
can start the next specification. The next specification states that the users want
the ability to like a comment.

We will use the same top-down approach and start our test from a Protractor test.
We will continue to follow the TDD life cycle, that is, test first, make it run, make
it better.

Test first
Following the pattern, we will start with a basic Protractor test template:

describe('',function(){
 beforeEach(function(){
 });

Chapter 4

[83]

 it('', function(){
 });
});

When we fill in the specification, we get the following:

describe('When I like a comment',function(){
 beforeEach(function(){
 });
 it('should then be liked', function(){
 });
});

With the template in place, we are ready to construct the test.

Assemble
The assembly of this test will require a comment to exist. Place the comment within
the existing posted comment test. It should look similar to this:

describe(''Given I am posting a new comment', function(){
describe('When I like a comment',function(){
…
 });
});

Act
The user specification we test is that the like button performs an action for a specific
comment. Here are the steps that will be required and the code required to do them
(note that the following steps will be added to the beforeEach text):

1. Store the first comment so that it can be used in the test:
var firstComment = null;
beforeEach(function(){
…

2. Find the first comment's like button:
var firstComment = element.all(by.repeater('comment in
comments').first();
var likeButton = firstComment.element
(by.buttonText('like'));

3. The code for the like button when it is clicked is as follows:
likeButton.click();

The First Step

[84]

Assert
The specification expectation is that once the comment has been liked, it is liked. This
is best done by putting an indicator of the number of likes, and ensuring the count
is 1. The code will then be as follows:

it('Should increase the number of likes to one',function(){
var commentLikes = firstComment.element(by.binding('likes'));
 expect(commentLikes.getText()).toBe(1);
});

The created test now looks as follows:

describe('When I like a comment',function(){
 var firstComment = null;
 beforeEach(function(){

 //Assemble
 firstComment = element.all(by.repeater('comment in comments').
 first();
 var likeButton = firstComment.element(by.buttonText('like'));

 //Act
 likeButton.click();
 });

 //Assert
 it('Should increase the number of likes to one', function(){
 var commentLikes = firstComment.element(by.binding('likes'));
 expect(commentLikes.getText()).toBe(1);
});});

Make it run
The test has been prepared and is itching to run. We will now run the test and fix the
code until the test passes. The following steps will detail the error and the fix cycle
required to make the test path:

1. Run Protractor.
2. View the error message in the command line:

$ Error: No element found using locator: by.buttonText("like")

Chapter 4

[85]

3. As the error states, there is no like button. Go ahead and add the button:
<li ng-repeat='comment in comments'>
{{comment}}
 <button type="button">like</button>

4. Run Protractor.
5. View the next error message:

$ Expected 'a comment like' to be 'a comment'.

6. By adding the like button, we caused our other test to fail. The reason is our
use of the getText() method. Protractor's getText() method gets the inner
text including inner elements. To fix this, we will need to update the previous
test to include like as part of the test:
it('Should then add the comment',function(){
var comments = element.all(by.repeater('comment in comments')).
first();
expect(comments.getText()).toBe('a comment like');
});

7. Run Protractor.
8. View the next error message:

$ Error: No element found using locator: by.binding("likes")

9. Time to add a likes binding. This one is a little more involved. Likes
needs to be bound to a comment. We need to change the way the
comments are held in the controller. Comments need to hold the comment
value and the number of likes. A comment should be an object like this:
{value:'',likes:0}. Again, the focus of this step is just to get the test
to pass. The next step is to update the controller's add function to create
comments based on the object we described in the preceding steps. Open
commentController.js and edit the add function as follows:
$scope.add = function(commentToAdd){
var newComment = {value:commentToAdd,likes:0};
 $scope.comments.unshift(newComment);
};

10. Update the page to use the value for the comment:
<li ng-repeat='comment in comments'>
{{comment.value}}

The First Step

[86]

11. Before rerunning the Protractor test, we need to add the new comment.likes
binding to the HTML page:
<li ng-repeat='comment in comments'>
…
{{comment.likes}}

12. Now rerun the Protractor tests and let's see where the errors are:
$ Expected 'a comment like 0' to be 'a comment like'

13. Because the inner text of the comment has changed, we need to change the
expectation of the test:
it('Should then add the comment', function(){
…
 expect(comments.getText()).toBe('a comment like 0');
});

14. Run Protractor:
$ Expected '0' to be '1'.

15. Now, we are finally down to the expectation of the test. In order to make
this test pass, the smallest change will be to make the like button update
the likes on the comment array. The first step is to add a like method on
the controller, which will update the number of likes:
$scope.like = function(comment){
comment.likes++;
};

16. Link the like method to the HTML page using an ng-click attribute on the
button as follows:
<button type="button" ng-click='like(comment)'>
like</button>

17. Run Protractor and confirm that the tests pass!

The page now looks as follows:

Chapter 4

[87]

Compared to the drawing at the beginning of this chapter, all the features have been
created. Now that we made the test pass in Protractor, we need to check the unit tests
to ensure that our changes didn't break the unit tests.

Fixing the unit tests
One of the primary changes required was to make the comment an object, consisting
of a value and number of likes. Before thinking too much about how the unit tests
could have been affected, let's kick them off. Execute the following command:

$ karma start

As expected, the error is related to the new comment object:

$ Expected { value : 'any comment', likes : 0 } to be 'any comment'.

Reviewing the expectation, it seems like the only thing required is for comment.
value to be used in the expectation as opposed to the comment object itself.
Change the expectation as follows:

it('',function(){
var firstComment = scope.comments[0];
expect(firstComment.value).toBe('any comment');
})

Save the file and check the Karma output. Confirm that the test passes. Both the
Karma and Protractor tests pass and we have completed the primary user behaviors
of adding a comment and liking it. You are free now to move on to the next step and
make things better.

Make it better
All in all, the approach ended up with the result we wanted. Users are now able
to like a comment in the UI and see the number of likes. The major callout from a
refactor standpoint is that we have not unit tested the like method. Reviewing our
development to-do list, we see that the to-do list is an action we wrote down. Before
completely wrapping up the feature, let's discuss the option of adding a unit test for
the like functionality.

The First Step

[88]

Coupling of the test
As already discussed in this book, tests are tightly coupled to the implementation.
This is a good thing when there is a complicated logic involved or you need to
ensure that certain aspects of the application behave in certain ways. It is important
to be aware of the coupling and know when it is important to bring it into the
application and when it is not. The like function we created simply increments a
counter on an object. This can be easily tested; however, the coupling we will bring
in with a unit test will not give us the extra value. In this case, we will not add an
additional unit test for the like method. As the application progresses, we may find
the need to add a unit test in order to develop and extend the function. Here are a
couple of things I consider when adding a test:

• Does adding a test outweigh the cost of maintaining a test?
• Is the test adding value to the code?

 ° Does it help other developers better understand the code?

• Is the functionality being tested in some other way?

Based on our decision, there is no more refactoring or testing required. In the next
section, we will take a step back and review the main points of this chapter.

Self-test questions
Q1. The $new function is used to create a child scope: $scope.$new.

1. True
2. False

Q2. Given the following code segment, how would you select the items in the list?

<li ng-repeat="item in myItems">
{{item.value}}
</li

1. element.all(by.repeater('item in items')).
2. element.all(by.repeater('item in myItems')).
3. element.all('item in items').

Chapter 4

[89]

Q3. The Angular mocks inject function is used to:

1. Resolve application dependencies/references.
2. Inject dependencies into the application.
3. None of the above.

Summary
In this chapter, we walked through the TDD techniques of using Protractor and Karma
together. As the application was developed, you were able to see where, why, and how
to apply the TDD testing tools and techniques. The approach, top-down, was different
than the bottom-up approach discussed in Chapter 2, The Karma Way and Chapter 3,
End-to-end Testing with Protractor. With the bottom-up approach, the specifications
are used to build unit tests and then build the UI layer on top of that. In this chapter,
a top-down approach was shown to focus on the user's behavior. The top-down
approach tests the UI and then filters the development through the other layers. Both
approaches have their merit. When applying TDD, it is essential to know how to use
both. In addition to walking through a different TDD approach, you saw some of the
core testing components of AngularJS such as:

• Testing a controller from end-to-end and unit perspectives
• Using Angular mocks to test the scope object of a controller
• Protractor's ability to:

 ° Bind to ng-repeater and ng-model
 ° Send key strokes to input columns
 ° Get an element's text by its inner HTML code and all subelements

The next chapter will build on the techniques used here and look into headless browser
testing, advanced techniques for Protractor, and how to test AngularJS routes.

Flip Flop
At this point, you should be feeling confident in the initial implementation of an
AngularJS application using TDD. You should be familiar with using a test-first
approach. In this chapter, you will continue to expand your knowledge of applying
TDD with AngularJS by looking at the following:

• AngularJS routes
• Partial views
• Protractor location references with CSS (Cascading Style Sheets) and

HTML elements
• Headless browser testing with Karma

Fundamentals
This chapter will walk you through applying TDD to routes and partial views for
a search application. Before getting into the walk-through, you need to be aware of
some of the techniques, configurations, and functions that will be used throughout
this chapter, which include:

• Protractor locators
• Headless browser testing

After you have reviewed these concepts, you can move on to the walk-through.

Protractor locators
Protractor locators are key components that you must take time to learn. This book
will not be able to show examples of all the different locators, but it will provide
examples of the most common ones.

Flip Flop

[92]

Protractor locators allow you to find elements within an HTML page. In this chapter,
you will see the following in action: CSS, HTML, and AngularJS-specific locators.
Locators are passed to the element function. The element function will find and
return elements in a page. The generic locator syntax is as follows:

element(by.<LOCATOR>);

In the preceding code, <LOCATOR> is a placeholder. The following sections describe
a couple of these locators.

CSS locators
CSS is used to add layout, color, formatting, and style to an HTML page. From an
end-to-end testing perspective, the look and style of an element may be part of a
specification. As an example consider the following HTML snippet:

<div class="anyClass" id="anyId"></div>
// ...
var e1 = element(by.css('.anyClass'));
var e2 = element(by.css('#anyId'));
var e3 = element(by.css('div'));
var e4 = $('div');

All four selections will select the div element.

Button and link locators
Besides being able to select and interpret the way something looks, it is also
important to be able to find buttons and links within a page. This will allow
a test to interact with the site easily. Here are a couple of examples:

• Button text locator:
<button>anyButton</button>
// ...
var b1 = element(by.buttonText('anyButton'));

• Link text locator:
anyLink
// ...
var a1 = element(by.linkText('anyLink'));

Chapter 5

[93]

Angular locators
One of Protractor's key strengths is that it provides testing functionality specific
to AngularJS. The repeater locator will select the elements within the application
where ng-repeat was used. This is especially useful when looking at the number of
returned results and the values of individual results. One key to using this locator is
that the string of the repeater locator must match the ng-repeat string used in the
AngularJS application. Here is an example of using the repeater locator:

//The List in the application to use ng-repeat on
<li ng-repeat="item in list">
 <div>
 link
 </div>

// ...
var firstItem = element.all(by.repeater
('item in list')).first();

The preceding code highlights how to find the first element in a repeater. It should
be clear that in this case, the element.all function finds all the elements matching
the selector. Then, the first() method is used to return the first element found.

URL location references
When testing AngularJS routes, you need to be able to test the URL of your test. By
adding tests around the URL and location, you ensure that the application follows
specific routes. This is important because routes provide an interface into your
application. Here is how to get the URL reference in a Protractor test:

var location = browser.getLocationAbsUrl();

Now that you have seen how to use the different locators it is time to put the
knowledge to use.

Creating a new project
It is important to get a process and method to set up your projects quickly. The
less time you're thinking of the structure of the directory and the required tools,
the more time you're developing!

Flip Flop

[94]

Some people use the angular-seed (https://github.com/angular/angular-seed)
project, Yeoman, or create a custom template. Although these techniques are useful
and have their merit, when starting out in AngularJS, it is essential to understand
what it takes to build an application from the ground up. By building the directory
structure and installing tools yourself, you will understand AngularJS better. You
will be able to make layout decisions based on your specific application and needs,
as opposed to fitting into some other mold. As you grow and become a better
AngularJS developer, this step may not be needed and will become second nature
to you.

In previous chapters, we discussed how to get the project set up, explained the
different components involved, and walked through the entire process. I will skip
these details and expect that you can recall how to perform the necessary installation.
To confirm the installation, here is a screenshot of the expected output:

Setting up headless browser testing
for Karma
In previous chapters, you were running Karma using the default configuration.
The default Chrome configuration launches Chrome on every test. Testing against
the actual code and browser, which the application will run in, is a powerful tool.
However, when launching, a browser may not be how you always wanted it. From
a unit test perspective, you may not want the browser to be launched in a window.
Some of the reasons are tests may take a long time to run or you may not always
have a browser installed.

https://github.com/angular/angular-seed

Chapter 5

[95]

Luckily, Karma comes equipped with the ability to easily configure PhantomJS, a
headless browser. A headless browser runs in the background and will not display
web pages in a UI. The PhantomJS headless browser is a really great tool to use for
testing. It can even be set up to take screenshots of your tests! Read more about how
this is done and the WebKit used on the PhantomJS site at http://phantomjs.org/.
The succeeding setup configuration will show you how to set up PhantomJS with
Karma to get headless browser testing.

Preconfiguration
When Karma is installed, it automatically includes the PhantomJS browser plugin.
For your reference, the plugin is located at https://github.com/karma-runner/
karma-phantomjs-launcher. There shouldn't be any additional installation or
configuration required. However, if your setup states that it is missing karma-
phantomjs-launcher, you can easily install it using npm:
$ npm install karma-phantomjs-launcher

Configuration
PhantomJS is configured in the browser section of the Karma configuration. Open
the karma.conf file and update it with the following details:

browsers: ['PhantomJS'],

Now that the project has been initialized and configured with headless browser
testing, you can see it in action through the following walk-throughs.

Walk-through of Angular routes
This walk-through will leverage AngularJS routes. Routes are an extremely useful
feature of AngularJS. They allow you to control certain aspects of the application
using different views. This walk-through will flip between views to show you
how to use TDD to build routes. The following are the specifications:

• Given a view A that has a single button; the following actions will take place:
 ° The button is pushed
 ° The view is switched to view B

http://phantomjs.org/
https://github.com/karma-runner/karma-phantomjs-launcher
https://github.com/karma-runner/karma-phantomjs-launcher

Flip Flop

[96]

• Given a view B that has a single button; the following actions will take place:
 ° The button is pushed
 ° The view is switched to view A

Essentially, this will be an application that does a flip flop between views.

Setting up AngularJS routes
Before you use AngularJS routes, you need to install the AngularJS route component.
You can install AngularJS routes using bower as follows:

$ bower install angular-route

Angular routes requires Angular, as you can imagine. In order to use it an HTML
page would look as follows:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
<script src="bower_components/angular/angular.js">
</script>
<script
src="bower_components/angular-route/angular-route.js"></script>

</body>
</html>

Defining directions
A route specifies a specific location and expects a result. From an AngularJS
perspective, the routes must first be specified and then associated to certain
elements within them.

Configuring ngRoute
In order to use AngularJS routes, we first need to bring ngRoute in as a dependency
into the application. In app/flipFlop.js, modify the code to bring in ngRoute as a
dependency and return the module:

var flipFlop = angular.module('flipFlop',['ngRoute']);

Chapter 5

[97]

Now, the second thing required is we need to configure the routes that we need.
In our case, we need two routes: one for viewA and one for viewB. The route
configuration will then look as follows:

flipFlop.config(['$routeProvider',function($routeProvider){
 $routeProvider
 .when('/view/a',{
 templateUrl : 'app/viewA.html',
 controller : 'ViewAController'
 })
 .when('/view/b',{
 templateUrl : 'app/viewB.html',
 controller : 'ViewBController'
 })
 .otherwise({
 redirectTo : '/view/a'
 });
}]);

A route is defined using when, which has a first argument as a string for the full
route. The second argument is an object, which takes the HTML page for the route
(template URL) and the controller for the route (controller).

Defining the route controllers
For both routes, create an empty controller so that it can be a placeholder for the
future controller. Here are the steps you need to follow to define route controllers:

1. Create a new file for the View A controller (/app/ViewAController.js):
angular.module('flipFlop')
 .controller('ViewAController',['$scope',function($scope){
 }]);

2. Create another new file for the View B controller (/app/ViewBController.
js):
angular.module('flipFlop')
 .controller('ViewBController',['$scope',function($scope){
 }]);

3. Add the two controllers to the index.html page:
<script src="app/viewAController.js"></script>
<script src="app/viewBController.js"></script>

Flip Flop

[98]

Defining the route views
Route views are partial HTML elements that can be dynamically placed into an
application. For the two views we require, we will put a basic div tag for each
view, as shown in the following steps:

1. Create a new file for app/viewA.html:
<div id="viewA"></div>

2. Create a new file for app/viewB.html:
<div id="viewB"></div>

The last thing required is to put a placeholder where the route view will be placed in
the index.html page:

<div ng-view></div>

Now, the routes are set up with the initial views and controllers. We can continue
with the Protractor test.

Assembling the flip flop test
Following the first of the 3 A's, Assemble, the following steps will show you how
to assemble the test.

1. Start with the Protractor base template:
describe('Given a view A that has a single button',
function(){
 describe('When the button is pushed',function(){
 beforeEach(function(){
 })
 it(''should be switched to view B'', function(){
 })
 })
})

2. Navigate to the root of the application using the following code:
browser.get('/index.html');

3. The beforeEach method needs to confirm that the correct view is being
displayed. This can be done using a CSS locator to look for the div tag of
viewA. The expectation will look as follows:
var viewA = element(by.css('#viewA'));
expect(viewA.isPresent()).toBeTruthy();

Chapter 5

[99]

4. Then, add an expectation that viewB is not visible:
var viewB = element(by.css('#viewB'));
expect(viewB.isPresent()).toBeFalsy();

You will notice how the selection of viewA and viewB is done outside of the
beforeEach method, so it can be used for other expectations.

Making the views flip
The preceding test needs to confirm that when the flip button is pushed, the view
should switch. In order to test this, you can use the by.buttonText locator. Here is
what it will look like:

var buttonToPush = element(by.linkText('flip'));
buttonToPush.click();

The beforeEach function is now complete and looks as follows:

var viewA = element(by.css('#viewA'));
var viewB = element(by.css('#viewB'));
beforeEach(function(){
 browser.get('/index.htm');
 expect(viewA.isPresent()).toBeTruthy();
 var buttonToPush = element(by.linkText('flip'));
 buttonToPush.click();
})

Now, you can add the assertion.

Asserting a flip
The assertion will again use Protractor's CSS locator to find that viewB is available:

it('should be switched to view B',function(){
 expect(viewB.isPresent()).toBeTruthy();
})

You also need to confirm that viewA is no longer available. Add the expectation that
viewA should not exist:

it('should not display view A',function(){
 expect(viewA.isPresent()).toBeFalsy();
})

The test has now been assembled.

Flip Flop

[100]

Making flip flop run
Now, you will see the steps required to make the flip flop run:

1. In a new console window, start http-server:
$./node_modules/http-server/bin/http-server -p 8080

2. Run Protractor:
$./node_modules/protractor/bin/protractor protractorConf.js

3. The first error states Error: Angular could not be found on the page
http://localhost:8080/ : angular never provided resumeBootstrap.
When you get this error, proceed with the following steps:

1. This error means that no AngularJS application has been associated
with the application. It's now time to create the application module
and add it to the page.

2. Create a new file named /app/flipFlop.js:
angular.module('flipFlop',[]);

3. Add the new module to the index.html page:
<script src="app/flipFlop.js"></script>

4. Add the AngularJS application identifier to the page:
<body ng-app='flipFlop'>

5. Rerun the Protractor test.

4. The error is Error: No element found using locator:
by.linkText("flip"). To rectify this perform the following steps:

1. Open up the app/viewA.html file and add a link to the View B
route with the flip text:
 <div id="viewA">
 flip</button>
 </div>

2. Rerun the test.

5. The Protractor tests now pass.

Chapter 5

[101]

Making flip flop better
For practice, you should add a link to switch back to viewA from viewB. There is
nothing that has been called out that needs to be changed or refactored. The main
takeaway from this walk-through is how to use Protractor to test routes. Here are
some screenshots of the application:

• The initial index page is shown in the following screenshot:

• The following is what you'll see after the view has been switched:

Searching the TDD way
This walk-through will show you how to build a simple search application. The
walk-through has two components. The first discusses a search query component.
The second uses routes to display search result details.

Deciding on the approach
This walk-through uses the top-down TDD approach. It starts with writing failing
tests, from the UI point of view using Protractor, and then working through the
application with a combination of unit and end-to-end tests.

Walk-through of search query
The application being built is a search application. The first step is to set up the
search area with search results. Imagine I am performing a search. The following
actions will occur:

• A search query is typed in
• Results are displayed on the left sidebar

Flip Flop

[102]

This piece of the application is very similar to the test, layout, and approach you saw
in Chapter 4, First Steps. The application will need to use an input, respond to a click,
and confirm the resulting data. Since the tests and code use the same functionality
as the previous example, it is not worth providing a complete walk-through of the
search functionality. Instead, the following section will show the resulting code
with a few explanations.

The search query test
The following code represents the test for the search query functionality:

describe('', function(){
 //Store the searchResult for use in the test
 var searchResult = null;
 beforeEach(function(){

 //ASSEMBLE
 browser.get('/index.html');
 var searchResult = element.all(by.repeater('result in results'));
 expect(searchResult.count()).toBe(0);

 //ACT
 var searchQueryInput = $('input');
 searchQueryInput.sendKeys('any value');
 var searchButton = element(by.buttonText('search'));
 searchButton.click();
 });

 //Assert
 it('', function(){
 expect(searchResult.count()).toBe(1);
 });
});

You should notice a parallel to previous tests. The functionality is written to mirror
the behavior of a user typing in the search box. The test finds the input field, types a
value, and then selects the button that says Search. The assertion confirms that the
result contains a single value. The next section will look at the application from the
HTML page.

Chapter 5

[103]

The search query HTML page
The following code shows the resulting body of the search query HTML page:

<body ng-app="search">
 <div ng-controller="SearchController">
 <input type="text" ng-model="searchQuery"></input>
 <button ng-click="search(searchQuery)">search</button>

 <li ng-repeat="result in results">{{result}}

 </div>

 <script src="bower_components/angular/angular.js"></script>
 <script src="app/search.js"></script>
 <script src="app/searchController.js"></script>
</body>

The main highlights of the HTML page are:

• The use of the searchController class' model to store the searchQuery
class in the input:
<input type="text" ng-model="searchQuery"></input>

• Associating the button click event to the searchController's
search function:
<button ng-click="search(searchQuery)">search</button>

The next section will show the resulting search module and searchController.

The search application
Here is the result of the searchModule code:

var searchModule = angular.module('search',[]);

Here is the result of the searchController code:

angular.module('search')
 .controller('SearchController',['$scope', function($scope){
 $scope.results = [];
 $scope.search = function(){
 $scope.results = ['Any Value'];
 };
 }]);

Flip Flop

[104]

The preceding AngularJS components are similar to what has already been shown
in previous chapters. Now that you have reviewed the existing search piece of the
application, you can walk through the steps to display search result detail views.
Here is what the search application looks like so far:

Show me some results!
Now that the Search button is set with the required features, the resulting details
need to be displayed when a search result is selected. Here is the user specification.
Given the following search results:

• I select an item from the search results
• I will see the details in the main page component

Following the top-down approach, the first step will be the Protractor tests followed
by the necessary steps to get the application fully functional.

Creating the search result routes
This application will use routes to switch between views. As this step is primarily
about configuration, it doesn't make sense to wait until a test fails. The following
steps will briefly recap the necessary steps, as you have already walked through
the steps with the flip flop application:

1. Install angular-routes using Bower:
$ bower install angular-route

2. Add angular and angular-route to the index.html page:
<script src="bower_components/angular
/angular.js"></script>
<script src="bower_components/angular-route/angular-
route.js"></script>

3. Create a ngRoute module as a dependency in the application
(app/search.js):
var searchModule = angular.module('search',['ngRoute']);

Chapter 5

[105]

4. Configure the routes in the app/search.js file. Add the following
route configuration:
searchModule.config(['$routeProvider',function($routeProvider){
 $routeProvider
 .when('/splash',{
 templateUrl : 'app/splash.html',
 controller : 'SplashController'
 })
 .when('/detail/:id',{
 templateUrl : 'app/searchDetail.html',
 controller : 'SearchDetailController'
 })
 .otherwise({
 redirectTo : '/splash'
 });
}]);

The preceding configuration contains two routes. One for a splash screen/
landing page that will be displayed when the user first comes to the page.
The second is the route to get the search details.

5. Add the route stub controllers:
1. Create a new file for SplashController (app/splashController.js):

angular.module('search')
 .controller('SplashController',['$scope',function($scope){
 }]);

2. Create a new file for SearchDetailController (app/
searchDetailController.js):
angular.module('search')
 .controller('SearchDetailController',['$scope',function($
scope){
 }]);

6. Add the detail controller to the index.html page:
<script src="app/searchDetailController.js"></script>

7. Create the partial view HTML files by following these steps:

1. Create a new file for splash.html:
<div id="splash"></div>

2. Create a new file for searchDetail.html:
<div id="searchResultDetail"></div>

Flip Flop

[106]

The routes for the test have now been created. You can continue to the next step and
begin adding the functionality to link search results to the result details.

Testing the search results
As the specification states, you will need to leverage the existing search results.
Instead of creating a test from scratch, you can add to the existing search query
test. Start with a base test embedded in the search query test as follows:

describe('Given I am searching',function(){
 describe(''when I type in a search query'',function(){
 ...
 describe('Given search results',function(){
 describe('When I select an item from the search
 results',function(){
 beforeEach(function(){
 });
 it('should see the details in the main page
 component',function(){
 });
 });
 });
 })
})

Now move on to the next step and build the test.

Assembling the search result test
In this case, the search results are already available from the search query test.
You don't have to add any more setup step for the test.

Selecting a search result
The object under test is the result. The test is when the result is selected and then the
application must do something. The steps to write this in Protractor are as follows:

1. Find a result item using the following code:
var resultItem = element(by.repeater('result in
results')).first();

Chapter 5

[107]

2. Select the result item. As you will be representing the details using a route,
you will create a link to the details page and click on the link. Here are the
steps to create a link:

1. Select the link within the result item. This uses the element currently
selected and then finds any subelements that meet the criteria. The
code for this is as follows:
var resultLink = resultItem.element(by.css('a'));

2. Now to select the link add the following code:
resultLink.click();

Confirming a search result
Now that the search item has been selected, you will need to verify that the result
details page is visible. The simplest solution at this point is to ensure that the details
view is visible. This can be done using Protractor's CSS locator to look for the search
detail view. The following is the code to be added for confirming a search result:

it('Should see the details in the main page component',function(){
 var resultDetail = element(by.css('#searchResultDetail'))
 expect(resultDetail.isDisplayed()).toBeTruthy();
})

Here is the complete test:

...
describe('When I select an item from the search results', function(){
 beforeEach(function(){
 var resultItem = element.all(by.repeater('result in results')).
first();
 var resultLink = resultItem.element(by.css('a'));
 resultLink.click();
 });
 it('Should see the details in the main page component',function(){
 var resultDetail = element(by.css('#searchResultDetail'))
 expect(resultDetail.isDisplayed()).toBeTruthy();
 });
});

Now that the test is set up, you can continue to the next phase of the life cycle and
make it run.

Flip Flop

[108]

Making the search result test run
For this step of the life cycle, we will execute Protractor and make fixes in the
application in order to make the test run successfully. Here are the steps you
need to follow:

1. The first error : Error: No element found using locator:
by.cssSelector('a')

 ° We need to add a link to the result item list, which will point to
the details of the result. In terms of Angular routes, we will add
#/detail/:resultId as a prefix:
<li ng-repeat="result in results"><a href="#/detail/
{{result.id}}">{{result.name}}

2. Now rerun the test and we get UnknownError: unknown error: Element
is not clickable at point (48, 57). Other element would receive
the click:....

 ° This error is not as clear. When this happens, and the error is not as
specific as required, you can jump to the site itself and look at the
JavaScript console for errors. Go to http://localhost:8080.
Here is a screenshot of what you should see:

 ° The main problem is that the link is not on the page. Looking back at
the code, you can see that the search result object is an array of strings
but it needs to be an array of objects that have an ID and name.

Chapter 5

[109]

 ° Update the app/searchController.js search function as follows:
 $scope.search = function(){
 $scope.results = [{id:1,name:'Any Value'}];
 };

 ° Now rerun the test.

3. The routes have now been configured to the new route (#/detail/
{{result.id}}) and the tests now pass.

Creating a location-aware test
As the application uses routes, the route detail view will need to be tested. In this
case, you will need to ensure the URL has the ID of the search result. Follow these
steps to add the test:

1. In the beforeEach method, retrieve the ID of the search result based on href
of the link attribute:
var resultId = null;
beforeEach(function(){
…
resultId = resultLink.getAttribute('href').then(function(attr) {
return attr.match(/#\/detail\/(\d+)/)[1];
});
});

2. Resolve the resultId promise containing the ID of the result:
it('Should set the url to the selected detail view',function(){
resultId.then(function(id) {

3. Within the promise, create expectedUrl:
var expectedUrl = '/detail/'+id;

4. Get the location of the URL:
browser.getLocationAbsUrl()

5. Use the promise to check the expectation on the URL:
.then(function(url) {
expect(url.split('#')[1]).toBe(expectedUrl);
});
});

Location-aware tests can be very helpful when dealing with routes. The tests can be
simple or complex, but help align the route interface to clear specifications.

Flip Flop

[110]

Making the search result better
Now that there is a passing test, some cleanup and refactoring is needed. There are
two primary callouts:

• No unit tests.
• How do you know searchResultDetail is specific to the search result

we select?

Up to this point, there hasn't been a need to create unit tests to build the application.
The focus has been on the UI in the application. There hasn't been logic or actions
needed to build on the backend. Most of the development has been focused on
wiring up the frontend and making sure the components in the specification are
available to the user.

The other action that you need to look at is the fact that there is not a way to test
that a loaded view actually reflects data from the selected result. This can be tackled
in two parts. The first part is to ensure that the URL for the window points to the
correct route. The second part will be to display the ID number of the search result
on the view.

Confirming the route ID
The ID will not be displayed to the users; however, it is still an integral part of
the application. As the application grows in the following chapters, you will be
leveraging the ID to extract further data. This walk-through will follow the TDD
life cycle and use Karma to build the feature.

Setting up the route ID unit test
To inject the scope into a controller, the initial test will look as follows:

describe('',function(){
 var scope = {};
 beforeEach(function(){
 module('search');
 inject(function($controller){
 $controller('SearchController',{$scope:scope});
 });
 });
 it('',function(){});
});

Chapter 5

[111]

In order to test the routes, the test will leverage the $routeParams object. The
$routeParams object gives an object access to information relating to the route
that brought the application to the location. For example, the /detail/:id route
definition and the /detail/123, $routeParams route will give you the {id:123}
object. For the test, a fake $routeParams object containing the ID of the detail object
will be used. Update the test so that it has the following fake $routeParams object,
which will return an ID of 1:

beforeEach(function(){
// ...
var routeParams = {id:1};
$controller('SearchDetailController',{$scope:scope,
$routeParams: routeParams });

Now that the fake $routeParams object has been injected into the controller, you can
continue to the next phase and make the assertion.

Confirming the ID
The assertion is that the scope has a detail object with the same ID that
$routeParams specified. The code for confirming the ID is as follow:

it('Should return results',function(){
expect(scope.detail.id).toBe(1);
});

Making the route parameter's test run
Now that Karma is running using a headless browser, we can start Karma
in the console and let it run as we walk through the issues, as shown in the
following steps:

1. Start Karma:
$ karma start

2. The first issue we get is that ngRoute can't be found. This is because we
added angular-route to the project, but haven't added it to karma.conf.
Update the karma.conf update the files section with the following code:
files: [
// ...
'bower_components/angular-route/angular-route.js',

Flip Flop

[112]

3. After rerunning the test, we are left with TypeError: ''undefined'' is
not an object (evaluating scope.detail.id). To rectify this, perform
the following steps:

1. This error informs us that the scope.detail.id object doesn't
exist in the controller. We will now update the controller to
include it. The first step to fixing this is to add $routeParams to
searchDetailController:
.controller('SearchDetailController',['$scope','$routeParams
',function($scope,$routeParams){

2. Now, in the controller, create the detail object with the
$routeParams ID:
$scope.detail = {id : $routeParams.id};

3. The detail object has now been created using the ID of the route. Go
ahead and rerun the test.

The test passes!

The application now looks like what is shown in the following screenshot when you
first open it:

After a search query, the application looks like what is shown in the following
screenshot:

For details of the application looks as shown in the following screenshot (notice that
the URL contains the detail route):

Chapter 5

[113]

Self-test questions
Q1. Given the following HTML code, how would you select the second list item?

item 1
item 2

1. element.all(by.css('li')).second();.
2. element (by.repeater('item in list'))[1];.
3. element.all(by.css('li')).get(1);.

Q2. Given the following AngularJS component, how would you select the element
and simulate a click?

Some Link

1. $('a').click();.
2. element(by.css('li)).click();.
3. element(by.linkText('Some Link')).click();.

Q3. When using routes with AngularJS you need to install angular-route.

1. True.
2. False.

Summary
This chapter has shown you how to use TDD to build an AngularJS application.
The approach, up to this point, has focused on the specification from a user
perspective and using TDD from top-down approach. This technique helps you get
usable, small components tested and completed for the users. As applications grow,
so does their complexity. As we move on to the next chapter, we will explore the
bottom-up approach and see when to use that technique over a top-down approach.

This chapter has shown you how TDD can be used to develop route-based views.
This includes utilizing multiple controllers and views. Routes allow you to get a
nice separation of your components and views. We have shown the usage of several
Protractor locators, from CSS, to repeaters, to link text, to inner locators. Besides
using Protractor, we have also learned how to configure Karma with a headless
browser, and we got to see it in action.

Telling the World
The buildup of TDD focused on fundamental components, namely life cycle and
process, using step-by-step walk-throughs. You have taken several applications from
the ground up, understanding how to build AngularJS applications and use tools
to test them. It is time to expand further into the depths of AngularJS and integrate
services, broadcasting, and routes.

This chapter will be slightly different than the others in two ways:

• Instead of building a brand new application, we will use the search
application from Chapter 5, Flip Flop.

• Also, a bottom-up approach will be used. This consists of creating unit tests
first and then moving to the UI.

Before the plunge
Before the walk-through, the core concepts of the chapter will be reviewed first.
It is important that you understand these concepts before you move on to the
walk-through.

Karma configuration
So far, the default Karma configuration has been used, but no explanation on the
default configuration has been given yet. File watching is a useful default behavior
that will now be reviewed.

Telling the World

[116]

File watching
File watching is enabled by default when the karma init command is used.
File watching in Karma is configured with the following definition in the
karma.conf.js file:

autoWatch: true,

The file watching feature works as expected and watches the files defined in the
configuration's files array. When a file is updated, changed, or deleted, Karma will
respond by rerunning the tests. From a TDD perspective, this is a great feature as
tests will continue to run without any manual intervention.

The main point to watch out for is the addition of files. If the file being added doesn't
match the criteria in the files array, the autoWatch parameter won't respond to the
change. As an example, let's consider that the files are defined as follows:

files : ['dir1/**/*.js']

If this is the case, the watcher will find all the files and subdirectory files ending in
.js. If a new file is in a different directory, not in dir1, then the watcher will not be
able to respond to the new file because it is in a different directory than what it was
configured in.

Using a bottom-up approach
The top-down approach of TDD can be very useful. It helps focus on user-facing
components first and then fills up the backend layer. One of the caveats to this
approach is that the specification being built is more user facing as opposed to it being
based on logic. The bottom-up approach builds from the inner components out to the
UI and the user. This kind of approach is extremely important when working with
complicated logic and requirements. With the bottom-up approach, you will first
build services, controllers, and directives with all the complexities using unit tests
and Karma. After this, you will expand to create end-to-end tests with Protractor.

Services
AngularJS services, factories, and resources are all important components.
Services are used to abstract application logic. They are used to provide single
responsibility for a particular action. Single responsibility allows components to
be easily tested and changed. This is because the focus is on one component and
not all the inner dependencies.

Chapter 6

[117]

Here is a summary of some of the other AngularJS components that have been
looked at so far:

• Attributes and directives: These drive actions and flow from the UI
• Controllers: This provides the glue between the UI and logic
• Services: This isolates the logic

Publishing and subscribing messages
One of the great features of AngularJS is its ability to publish and subscribe messages
within a page. Publishing and subscribing messages is a powerful component, but
like with anything, when used the wrong way, it can lead to a mess.

One area where this pattern is useful is when communicating across boundaries in
an application. Application boundaries are important as they allow the UI to have
isolated code. Complexity occurs when separate UI components need to be aware
of changes in other areas of the UI. With a publishing and subscription model,
applications can communicate seamlessly using messages. This chapter will focus on
publishing and subscribing. You will be able to take a closer look at what boundaries
are and determine good places to leverage this feature in your own applications.

There are two ways in which messages can be published. You can either emit or
broadcast. It is important to know the difference as both work slightly differently,
and they may affect the performance of your application.

Emitting
One way to publish events is to emit them. The documentation at https://docs.
angularjs.org/api/ng/type/$rootScope.Scope gives the functionality of the
$emit() method as follows:

Dispatches an event name upwards through the scope hierarchy notifying the
registered $rootScope.Scope listeners.

The important thing to note is $emit() notifies up through the scopes all the way to
the top of the hierarchy. This is important because if you have an embedded controller
scope, it is going to have to propagate all the way up to every controller and scope.
This can cause a performance issue. Here is an example of how to emit an event:

$scope.someAction = function(){
 $scope.$emit('ANYEVENT');
};

The best way to see the upward propagation of the event is through a test. The next
section will show you how to unit test the upward effect of $emit().

https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope

Telling the World

[118]

Testing emit
The following tests have three controllers: TopController, MiddleController,
and BottomController. MiddleController will emit the event. From this,
an expectation can be made that TopController will receive the event and
BottomController won't, as the emission propagates in an upward fashion.
Here are the steps to test the $emit() method:

1. Create spies to test the emission of events:
var topEventSpy = jasmine.createSpy();
var bottomEventSpy = jasmine.createSpy();

2. The test setup first sets the hierarchy of scopes:
inject(function($controller,$rootscope){
 var topScope = $rootscope.$new();
 var middleScope = topScope.$new();
 var bottomScope = middleScope.$new();

3. Then the controllers are set with their respective scopes:
$controller('TopController',{$scope:topScope});
$controller('MiddleController',{$scope:middleScope});
$controller('BottomController',{$scope:bottomScope});

4. Set the spy to capture the events:
topScope.$on('MIDDLEEMIT',topEventSpy);
bottomScope.$on('MIDDLEEMIT',bottomEventSpy);

5. Emit the event from the middle scope:
middleScope.$emit('MIDDLEEMIT');

6. Add the expectation that the top spy was called on the events:
it('Should notify top controller',function(){
 expect(topEventSpy.wasCalled).toBe(true);
});

7. Add the expectation that the bottom spy was not called:
it('Should not notify bottom controller', function(){
 expect(bottomEventSpy.wasCalled).toBe(false);
});

Chapter 6

[119]

Here are a couple of things to note from the preceding test:

• This is a unit test that we will run in Karma.
• The inject method provides a reference to the $controller and

$rootscope scopes. The $rootscope scope is the topmost scope of an
AngularJS application. If you're using $rootscope to emit events, they
wouldn't need to propagate anymore as $rootscope is at the highest level.
In the later examples, $rootscope will be injected into the controller and
used to listen to and send events.

• A scope can create a new child scope. A child scope is created using the
$new method. You can imagine this to be equivalent to a page that has
embedded containers:
<div ng-controller="topController"
 <div ng-controller="middleController">
 <div ng-controller="bottomController">
 </div>
 </div>
</div>

Testing broadcast
The documentation at https://docs.angularjs.org/api/ng/type/$rootScope.
Scope states gives the functionality of the $broadcast() method as follows:

Dispatches an event name downwards to all child scopes (and their children)
notifying the registered $rootScope.Scope listeners.

As opposed to the $emit method, which pushes events up through the scope
chain, $broadcast pushes events down the chain. The other important distinction
to make is that the $broadcast event can't be cancelled, but $emit can be. These
are small intricacies that if not understood properly can have a negative effect on
the application. Like with the $emit event, the following example shows the way
broadcasting works through a test.

Testing broadcast
Utilizing similar techniques from the emission test, here are the steps to test the
broadcasting of events:

1. Create the spies:
var topEventSpy = jasmine.createSpy();
var bottomEventSpy = jasmine.createSpy();

https://docs.angularjs.org/api/ng/type/$rootScope.Scope
https://docs.angularjs.org/api/ng/type/$rootScope.Scope

Telling the World

[120]

2. Initialize the scopes:
var topScope = $rootScope.$new();
var middleScope = topScope.$new();
var bottomScope = middleScope.$new();

3. Set the respective controller scopes:
$controller('TopController',{$scope:topScope});
$controller('MiddleController',{$scope:middleScope});
$controller('BottomController',{$scope:bottomScope});

4. Set the spies to listen for the events:
topScope.$on('MIDDLEEMIT',topEventSpy);
bottomScope.$on('MIDDLEEMIT',bottomEventSpy);

5. Broadcast the event from middleScope:
middleScope.$broadcast('MIDDLEEMIT');

6. Have the expectation that the top scope was not touched:
it('Should not notify top controller',function(){
 expect(topEventSpy.wasCalled).toBe(false);
});

7. Have the expectation that the bottom scope received the message:
it('Should notify bottom controller', function(){
 expect(bottomEventSpy.wasCalled).toBe(true);
});

The preceding explanations have showed how to integrate and test two types
of AngularJS events. As you progress through the rest of the event tests, you will
find that the setup and techniques used here will be used throughout the rest of
the chapter.

Publishing and subscribing – the good
and bad
Knowing when to use publishing and subscribing is one thing, but knowing when
not to use them is the difficult part.

Chapter 6

[121]

The good
Before looking at the problems that publishing and subscribing can lead to, here are
some of the best scenarios where you can use this technique:

• Communicating important events to different components of the application
• Reducing coupling

Communicating through events
When thinking about events that need to be coupled, it is important to think about
what actions are driving the application. Given a bank application, events might
be as simple as DEPOSITED and WITHDREW. These two simple events may be used
in many other places. Think about you wanting to send an e-mail to the customer
every time they withdrew or automatically updated some real-time report. Instead
of polling the persistence layer, a real-time notification message can be used. In
AngularJS, this means that the UI can be made up of different components that can
respond to changes in one area, for example, UI notifications, updating workflows,
enabling features, or anything you can think of.

Communicating events so that other components can respond to them is key. When
you want to easily respond to events and changes, publishing and submitting is the
way to go. The following is another test to show how communication can be used:

1. Create scopes for the controllers:
recentTransactionScope = $rootScope.$new();
atmScope = recentTransactionScope.$new();

2. Assign the scopes to the controllers:
$controller('AtmController',{$scope:atmScope});
$controller('RecentTransactionsController',
{$scope:recentTransactionScope});

3. Set the spies:
spyOn(atmScope,'$emit').and.callThrough();
spyOn(recentTransactionScope.recent,'push');

4. Call the method being tested:
atmScope.withdraw(3.33);

5. Set the expectation that the event was emitted:
it('should emit an event',function(){
 expect(atmScope.$emit).toHaveBeenCalled();
});

Telling the World

[122]

6. Set the expectation that the recent transactions received the event:
it('should send event to recent transactions',function(){
 expect(recentTransactionScope.recent.push).
 toHaveBeenCalled();
});

Here are the controllers to further clarify the code:

1. The AtmController property (publisher):
bankModule.controller('AtmController', ['$scope',
function($scope){
 $scope.withdraw = function(amount){
 $scope.$emit('WITHDREW',amount);
 }
}]);

2. The RecentTransactionsController property (subscriber):
bankModule.controller('RecentTransactionsController', ['$scope',
function($scope){
 $scope.recent = [];
 $scope.$on('WITHDREW',function(amount){
 $scope.recent.push(amount);
 })
}]);

As discussed with the tests, AtmController emits the WITHDREW event after a
withdrawal occurs.

The preceding steps are just a simple example of how publishing and subscribing
can help communicate important activities across your application.

Reducing coupling
Communication is one aspect of the benefits of publishing messages. Messaging
gives you decreased coupling. Think about the preceding bank application that
communicates when a withdrawal occurs. The messages may be used for many
different aspects of the application, and since it is decoupled, we don't need to worry.
If we think about it another way, the withdraw function doesn't care about the rest of
the application. It only focuses on the fact that it will perform a withdrawal and then
send a message upon its completion. From the subscription perspective, the recent
transactions don't care where the withdrawal happens. It only has to focus on what
it needs to do when this happens.

Chapter 6

[123]

Decoupling the application can be extremely beneficial from a testing perspective.
Take another look at the bank application if you want to refactor and separate out
the tests. You could create a new test that is specific to the RecentTransactions
property. Since the application is decoupled, it doesn't care about AtmController.
The test can be separated out as follows:

1. The beforeEach function can be reduced to only deal with the scope of
recentTransactionsController and $rootScope:
var recentTransactionScope = {};
var rootScope = {};
beforeEach(function(){
 module('bank');
 inject(function($controller,$rootScope){
 rootScope = $rootScope.$new();
 recentTransactionScope = $rootScope.$new();

 $controller('RecentTransactionsController',
 {$scope:recentTransactionScope});
 });
 spyOn(recentTransactionScope.recent,'push');
 rootScope.$emit('WITHDREW',3);
});

2. In the beforeEach function, add a spy to help with testing:
spyOn(recentTransactionScope.recent,'push');

3. Instead of calling the AtmController class's withdraw function, we can call
$emit on $rootScope:
rootScope.$emit('WITHDREW',3);

4. The afterEach function and the expectation are the same as shown
previously:
afterEach(function(){
 recentTransactionScope.recent.push.calls.reset();
 });
 it('should send event to recent transactions',function(){
 expect(recentTransactionScope.recent.push).
 toHaveBeenCalled();
});

Telling the World

[124]

This example has shown that using messaging, you can decouple tests. Decoupling
application tests allows the application to grow without having to negatively refactor
the entire application. In the preceding case, if AtmController is changed, the
recentTransactions test and the recentTransactions controller won't need to be
changed. As long as the WITHDREW event is published, recentTransactions will not
have to be updated.

Harnessing the power of events
Publishing and subscribing events can lead to some ugly and hard-to-understand
spaghetti code. Now that the foundations for the chapter have been reviewed,
you can dive into implementing events into the search application.

The plan
The search application from Chapter 5, Flip Flop, is quite basic. At this point, it will
return a set of results, and then when the user clicks on a result, details will appear.
The application provides a foundation for future development. In this chapter, the
functionality will be expanded to include publishing and subscribing. Here is the
plan to expand the search application:

• The search application will be rebranded as a store application, and the
search results will display a list of products.

• When a product is selected, details will be displayed.
• All selected products from the search will be available in a new view for

"recently viewed" items.
• The detailed view of the product will have the option to "add to cart", and the

product will then be available in the cart view.

The plan is somewhat ambitious, but with all the knowledge we have on TDD and
AngularJS, the development should flow nicely.

Rebranding
The search application will be rebranded into a store application instead of rewriting
the search functionality that has already been written. In order to leverage the
existing search project, it will be copied into a new project file. Then, the new project
will use the tests to drive the development changes and refactoring. The refactor
steps have been left out, but a review of the code will show how the code and tests
were modified to create the product application.

Chapter 6

[125]

The refactor steps updated the unit tests and application to support the correct
naming for the application. It is important to take away two things from this:

• Refactor small to introduce big changes. Small incremental changes help
to progressively get to the next stage of the application. When big changes
occur, it can be confusing to know where and what to change. With small
changes, even though the same code is revisited several times, you can
ensure the tests pass at each stage instead of ripping the application apart
completely and then trying to put it all back together again.

• TDD applies during refactoring just as much as when doing core
development. The refactor steps followed were the same as the TDD steps.
Start with changing the test to meet our specification and then make the
code run to meet the specification. Applying these principles helps keep
productivity and focus.

Both the unit tests and end-to-end tests pass from the refactor steps. It is time to turn
to the first feature of the application.

Seeing recently viewed items
Now that the initial refactoring is complete, the new functionality of the product
application can be considered. The first specification that will be considered is the
ability to see "recently viewed" items. The specification is broken down into two
steps, as follows:

• The user selects a product to view the details
• They will be able to see the viewed products

This is an example of where broadcasting would be a good candidate. In the
preceding case, the specification is concerned with when a product has been selected.
In other words, when an event occurs, a subsequent action needs to happen. Using
AngularJS events ($broadcast()/$emit()), the event of selecting a product to view
can be published and then consumed by the recently viewed component.

The standard TDD life cycle will be used to build this component: test first, make it
run, make it better. We will be using a bottom-up approach (unit test first). The main
reason for choosing this approach is that there are multiple controllers involved, and
it will be easier to start at the bottom and make our way up through the application.

Test first
The first test we will be writing is that the SearchController class will publish an
event when a product is selected. The following sections detail how to write the test.

Telling the World

[126]

Assembling SearchController
Here are the steps to assemble the SearchController class:

1. Start with the test stub using the following code:
describe('',function(){
 beforeEach(function(){
 });
 it(function(){
 });
});

2. Get the scope of SearchController so that an action can be performed:
describe('', function(){
 beforeEach(function(){
 module('product');
 inject(function($controller,$rootScope){
 var searchControllerScope = $rootScope.$new();
 $controller('SearchController',
 {$scope:searchControllerScope});
 });
 });
 it(function(){
 });
});

3. Place a spy on the SELECTEDPRODUCT event:
var selectedProductSpy = jasmine.createSpy();
var searchControllerScope = {};
beforeEach(function(){
 module('product');
 inject(function($controller,$rootScope){
 searchControllerScope = $rootScope.$new();
 $controller('SearchController',
{$scope:searchControllerScope,$rootscope});
 searchControllerScope.$on('SELECTEDPRODUCT',
 selectedProductSpy);
 });
})

4. Add a cleanup function to clear the scope after each test and clear the spy:
afterEach(function(){
 searchControllerScope = {};
 selectedProductSpy.reset();
});

Chapter 6

[127]

Selecting a product
The test requires that a SELECTEDPRODUCT event has been published. The event will
occur when the selected product method is called with productId:

var fakeProduct = {productId:1};
searchControllerScope.selectProduct(fakeProduct);

Expecting events to be published
The expectation is that selectedProductSpy has been called:

it('',function(){
 expect(selectedProductSpy).toHaveBeenCalled();
});

Making the search controller run
Now we have to make the test pass and run. Here are the steps:

1. Start Karma using the following command:
$karma start

2. You'll get an error, namely TypeError: 'undefined' is not a function
(evaluating 'searchControllerScope.selectProduct(fakeProduct)').
To rectify this, perform the following step:

1. Add the method to SearchController:
$scope.selectProduct = function(){};

3. Then you'll get the error Expected spy unknown to have been called.
Error: Expected spy unknown to have been called. To rectify this,
perform the following steps:

1. The expectation has failed, which means the spy was never
called. Open up SearchController and add functionality
to the selectProduct method to emit an event:
$scope.selectProduct = function(productId){
 $rootScope.$broadcast('SELECTEDPRODUCT',productId);
};

2. Rerun the test.

4. The test will pass.

Now when a product is selected, the event is broadcasted. Any function wanting
to know when something gets selected can simply listen for the broadcast.

Telling the World

[128]

Recently viewed unit test
The next step is to add another test from the subscription side of the event to
RecentlyViewedController.

Test first
Again, the walk-through of the test steps will use the 3 A's.

Assembling RecentlyViewedController
Here are the steps to assemble RecentlyViewedController:

1. Start with the test stub using the following code:
describe('',function(){
 beforeEach(function(){
 });
 it(function(){
 });
});

2. Get the scope of RecentlyViewedController so that an action can be
performed:
describe('',function(){
 beforeEach(function(){
 module('product');
 inject(function($controller, $rootScope){
 var recentlyViewedScope = $rootScope.$new();
 $controller('RecentlyViewedController',
 {$scope:recentlyViewedScope});
 });
 });
 it(function(){
 });
});

3. Confirm that the number of recently viewed products is equal to 0:
expect(recentlyViewedScope.recent.length).toBe(0);

Invoking a recently viewed item
The action for this test is that the SELECTEDPRODUCT event has been published.
Now add the publish event:

var fakeProductEvent = {productId:1};
$rootscope.$broadcast('SELECTEDPRODUCT',fakeProductEvent);

Chapter 6

[129]

Confirming RecentlyViewedController
The assertion is that the number of recently viewed products is now equal to 1:

it('',function(){
 expect(recentlyViewedScope.recent.length).toBe(1);
});

Making RecentlyViewedController run
Here are the steps to run RecentlyViewedController:

1. Start Karma using the following command:
$ karma start

2. You'll get an error, namely Error: [ng:areq] Argument
'RecentlyViewedController' is not a function, got undefined. To
rectify this error, perform the following steps:

1. Create the required controller and create a new file named
RecentlyViewedController.js.

2. Then, add the following details:
angular.module('product')
.controller('RecentlyViewedController',['$scope',
function($scope){
}]);

3. Rerun the test.

3. Then you'll get the error TypeError: 'undefined' is not an object
(evaluating 'recentlyViewedScope recent.length'), which means
that the first expectation, that is the recent product 0, has been hit. As the
object is undefined, add it to the recentlyViewedScope scope.

4. Then you'll get the error Expected 0 to be 1. Error: Expected 0 to
be 1. To rectify this, perform the following steps:

1. The expectation has been hit. Now the behavior of the event needs to
be added to the controller.

2. Add $rootScope to the controller:
.controller('RecentlyViewedController',['$scope',
'$rootScope',function($scope,$rootScope){

3. Subscribe to the event from $rootScope:
$rootScope.$on('SELECTEDPRODUCT',function(productEvent){
})

Telling the World

[130]

4. Now add productEvent to the recent array:
$rootScope.$scope.recent.push(productEvent)

5. Rerun the test.

5. The tests will now pass.

End-to-end testing
The unit tests are complete and will verify that the publisher and subscriber can
both communicate with events. Now the walk-through will look at the application
as a whole and will show you how to create an end-to-end test. The specification
for recently viewed items is that in a given search result:

• A product is selected
• It will be available in the recently viewed items

Now, it is time to move on to actually creating the test.

Test first
As always, start by translating the specification in the test using the 3 A's, as the tests
will utilize the existing tests.

Assembling the recently viewed end-to-end test
Before you repeat the code from Chapter 5, Flip Flop, you should notice that the first
test already searches for and retrieves the search results. Therefore, the recently
viewed test can be embedded within the existing test for a search result that is
already available. At the bottom of the existing function of a search query, initialize
the test stub:

describe('when I type in a search query', function(){
// ...
describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

There is nothing else to assemble for the test, and you can move on to the next step.

Chapter 6

[131]

Selecting a search result
Now, searchResult needs to be invoked using the following steps:

1. The first step will be to select the first searchResult element:
var firstResult = searchResult.first();

2. Find the link within the first item:
var resultLink = firstResult.element(by.css('a'));

3. Click on the result:
resultLink.click();

Confirming recently viewed items
Now that a product has been selected and one product has been added to the
recently viewed items list, we need to view the recently viewed items. Here
are the steps to do this:

1. Get the recently viewed items:
var recentlyViewedItems = element(by.repeater
('items in recent'));

2. Confirm that the count of recently viewed items is equal to 0:
expect(recentlyViewedItems.count()).toBe(1);

Making the recentlyViewedItems test pass
Now the test needs to pass. Here are the steps to do this:

1. Start the website:
./node_modules/http_server/bin/http_server

2. Run Protractor:
./node_modules/protractor/bin/protractor chromeOnlyConf.js

3. You'll get an error, namely Expected 0 to be 1..
4. The error is that the expectation has failed. It is time to add the controller and

repeater to the recently viewed items list to show the items:
<div ng-controller="RecentlyViewedController">
 <div ng-repeat="item in recent">
 {{item}}
 </div>
</div>

Telling the World

[132]

5. Rerun the test
6. The error is the same as before. This time, Protractor errors don't give any

clues to what the issue is. The next step is to open up a browser and see what
the web browser JavaScript console is saying. Point your browser to http://
localhost:8080/#/recentlyViewed. Immediately, one error will be visible,
namely [ng:areq] Argument 'RecentlyViewedController' is not a
function, got undefined. To rectify this, perform the following steps:

1. Now that there is an actual error to fix, progress can be made. The
error indicates that the controller was not available. As the controller
has not been added, it is time to add the controller to the page. Open
up the index.html page and add the controller reference:
<script src="app/recentlyViewedController.js"></script>

2. Rerun the test.

7. Now the test will be successful.

Making recently viewed items better
The recently viewed controller is now complete. It would be nice to better organize
the view, however this can happen later. The point of this exercise was to establish
communication between separate views and create a usable function. This has been
achieved, and now you can move to the next step of the walk-through.

Creating a product cart
Another important aspect of the application is the ability to add products to a cart.
A publishing and subscription model will be used to publish when an item has been
saved to a cart. A subscription to the event will then keep track of items in the cart
so the user can easily see when saved items get updated in real time. Here is the
specification given the product details of a particular product:

• If the product is saved to a cart
• Product will be displayed in the product cart view

Now the necessary things are in order to get down to the 3 A's.

Publisher test first
The publisher will come from searchDetailController. The test will need
to ensure that when an item is saved, an event is published.

http://localhost:8080/#/recentlyViewed
http://localhost:8080/#/recentlyViewed

Chapter 6

[133]

Assembling searchDetailController
The searchDetailController already has some unit tests written. The existing test
can be leveraged to confirm the publishing feature. Here are the steps to create a
subtest to handle the saving of a cart:

1. Start with an inner stub:
describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
})

2. In order to test that an event has been emitted, a spy will be needed on
$rootScope. Bring in $rootScope and add a spy to it:
// ...
var savedToCartEventSpy = jasmine.createSpy();
beforeEach(function(){
 inject(function($rootScope){
 $rootScope.$on('SAVEDTOCART',savedToCartEventSpy);
 });
});

3. Add afterEach to reset the spy:
afterEach(function(){
 savedToCartEventSpy.calls.reset();
});

Invoking the saving of a product
In the beforeEach section, select the method and make the following changes:

beforeEach(function(){
 // ...
 var fakeProduct = {productId:1};
 searchDetailScope.saveProduct(fakeProduct);
})

Confirming the save event
The expectation is that the spy has been called:

it('',function(){
 expect(savedToCartEventSpy).toHaveBeenCalled();
})

Telling the World

[134]

Making the saveProduct test pass
Now we need to make the test pass. Here are the steps to make the saveProduct
test pass:

1. Start Karma:
$ karma start

2. The first error will be TypeError: 'undefined' is not a function
(evaluating 'searchDetailScope.saveProduct(fakeProduct)').
If you get this error, then follow these steps:

1. The function doesn't exist on the scope. Add it using the
following code:
$scope.saveProduct = function(product){};

2. Rerun the test.

3. Now the error has hit the expectation and says Expected spy unknown to
have been called. In this case, follow the given steps:

1. The smallest thing we can add to the test is the ability to emit the
event from the method. First add $rootScope to the controller:
.controller('SearchDetailController',['$scope',
'$routeParams','productService','$rootScope',
function($scope,$routeParams,productService,$rootScope){

2. Then add the Sbroadcast() event to it:
$rootScope.$broadcast('SAVEDTOCART',product);

3. Rerun the test.

4. The test is successful.

Test for the subscriber first
The subscriber unit test will confirm that when a SAVEDTOCART event is emitted, then
the product will be added to the cart object. The specification is as a SAVEDTOCART
event is given, the following action will be performed:

• It will add the product to the cart

Chapter 6

[135]

Assembling the product cart test
Here are the steps to assemble the product cart test:

1. Create a new file, spec/unit/cart.js.
2. Start with the base stub:

describe('', function(){
 beforeEach(function(){
 });
 it('', function(){
 });
});

3. Initialize the module:
module('product');

4. Initialize the scope so that expectations can be made:
var scope = {};
beforeEach(function(){
 // ...
 inject(function($controller){
 $controller('CartController',{$scope:scope});
 });
});

5. Initialize $rootScope so subscriptions can be made:
inject(function($controller,$rootScope){
 scope = $rootScope.$new();
 $controller('CartController',{$scope:scope,
 $rootScope:$rootScope});
 });

6. The last thing to confirm is that the cart is empty. Add the following
expectation to ensure the test is set up properly:
expect(scope.cart.length).toBe(0);

Invoking a saved cart event
This test is around the fact that when the SAVEDTOCART event is published, the
CartController property will perform a specific action. Add the publishing
of the event to the beforeEach method:

beforeEach(function(){
 // ...
 var fakeProduct = {productId:1};
 $rootScope.$broadcast('SAVEDTOCART',fakeProduct);
});

Telling the World

[136]

Confirming the saved cart
Now that the test has been set up and the act performed, you can assert. Assert that
the number of cart items is equal to 1 by adding the following code:

it('',function(){
 expect(scope.cart.length).toBe(1);
});

Making the cart controller test run
Now it's time to walk the test through the cycle by following the given steps until we
get a green test:

1. Start Karma:
$ karma start

2. The first error is Error: [ng:areq] Argument 'CartController' is not
a function, got undefined. As seen previously, the controller hasn't been
created. Create a new file and set up a stub controller (/app/cart.js):
angular.module('product')
.controller('CartController',['$scope',function($scope){
}]);

3. The next error will be TypeError: 'undefined' is not an object
(evaluating 'scope.cart.length'). This indicates that no object was
found on the scope named cart. Go ahead and create it now in app/cart.js:
$scope.cart = [];

4. Then, you'll get an expectation error, namely Expected 0 to be 1. Error:
Expected 0 to be 1. To rectify this, perform the following steps:

1. At this point, the controller is not doing anything with the event
being emitted. Add $rootScope as a dependency to the application:
.controller('CartController',['$scope','$rootScope',
function($scope,$rootScope){

2. Add the handling logic to capture the event and add the product to
the cart:
$rootScope.$on('SAVEDTOCART',function(productEvent){
 $scope.cart.push(productEvent);
});

5. Success! All the tests have passed.

Chapter 6

[137]

End-to-end testing
The unit tests are now complete, and it is now time to perform end-to-end testing for
the cart.

Assembling the cart's end-to-end test
The test comes from the perspective of being on a product detail view and selecting
a Save to Cart button. Once the item has been saved, it should be available in the
cart view. Here are the steps to assemble the cart's end-to-end test:

1. Create a new file named spec/e2e/cartScenario.js.
2. Start with the base template test:

describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

3. The next thing we need to do is navigate to a product page:
browser.get("#/product/1");

4. Select the button that will save the cart:
var saveToCartButton = element(by.buttonText
('Save to Cart'));

Invoking a save to cart action
The action is to click on the Save button using the following code:

saveToCartButton.click();

Confirming products have been saved
The assert is to confirm that the cart view now has at least one product:

it('',function(){
 var productsInCart = element.all(by.repeater
('product in cart'));
 expect(productsInCart.count()).toBe(1);
})

Telling the World

[138]

Making the cart's end-to-end test pass
Here is the walk-through of the process of making the application run:

1. Start the site:
$./node_modules/http-server/bin/http-server .

2. Run Protractor:
$./node_modules/protractor/bin/protractor chromeOnlyConf.js

3. The first error is NoSuchElementError: No element found using
locator: by.buttonText("Save to Cart"). To rectify this, perform the
following steps:

1. Go ahead and create the button within the product detail's app/
searchDetail.html partial view:
<button>Save to Cart</button>

2. Rerun the test.

4. The next error is Expected 0 to be 1. To rectify this, perform the
following steps:

1. This error means that the count is 0 for products in the cart. By
reviewing the index page, you can see that the cart doesn't even exist
in the page. First, add a reference to the cart controller:
<script src="app/cart.js"></script>

2. Next, the items in the cart need to be added to the page. First, add a
tag with the controller:
<div ng-controller="CartController"></div>

3. Finally, add a repeater to display the product in the cart:

 <li ng-repeat="product in cart">{{product}}

4. Rerun the test.

Chapter 6

[139]

5. The same error occurs, Expected 0 to be 1. To rectify this, perform the
following steps:

1. Even though the product data has been added, the test is still failing.
The next question is whether anything is being added to the cart.
In this case, no. The button is being selected but no action has been
associated with it. Update the button in app/searchDetail.html to
use the searchDetailController class's saveProduct method:
<button ng-click="saveProduct()">Save to Cart</button>

2. Rerun the test.

6. All the tests pass.

Self-test questions
The following are some questions to check your understanding:

Q1. When broadcasting a message, it propagates up the scope's hierarchy.

1. True
2. False

Q2. The following creates a spy in Jasmine:

1. var spy = jasmine.createSpy();

2. var spy = jasmine.$new();

3. var spy = jasmine.createFake();

Q3. The $rootScope scope is the highest level scope in AngularJS.

1. True
2. False

Additionally, if you want more practice, add the ability to add likes to the page.

Summary
This chapter has explored events within AngularJS. You saw two types of AngularJS
event emitters: $broadcast() and $emit(). You also saw some examples of applying
TDD to events and how events give a separation of controllers and code. In addition,
you expanded the types of testing techniques to include services and reiterated the
testing of controllers and models. You also explored further configuration of Karma to
use its features. In the next chapter, you will look at the integration and testing of data
and APIs into an AngularJS application.

Give Me Some Data
Applications need a way to consume the ever-expansive world of data.
Most applications written today consume data. Luckily for AngularJS developers,
consuming data is quite easy. Testing data consumption is also a core component
of the framework. In this chapter, we will cover the following topics:

• Integrating a REST-based service
• Creating and mocking AngularJS's $http
• Handling exceptions
• Implementing a fake API builder pattern

REST – the language of the Web
Representational State Transfer (REST) defines how the Web should communicate.
From an AngularJS application standpoint, the main concern is with the HTTP
methods. For HTTP methods, REST can be thought of as the verbs or actions that an
HTTP request can make. Specifically, an HTTP request can make these request types:
GET, POST, PUT, and DELETE. From an API standpoint, the HTTP methods can be
used to determine how logic should handle the specific HTTP request type. Here is a
further look at the common HTTP methods:

HTTP Method Description Example
GET Retrieves data from an

endpoint
curl --request GET 'http://<SOME
URL>'

POST Posts a new data
element to the endpoint

curl –request POST 'http://<SOME
URL>' –data 'anydata'

Give Me Some Data

[142]

HTTP Method Description Example
PUT Inserts or updates the

enclosed data element
to the endpoint

curl –request POST 'http://<SOME
URL>' –data 'anydata'

DELETE Deletes a request to the
endpoint

curl --request DELETE
'http://<SOME URL>'

The curl tool is a command-line tool that can be used to make
requests. On Unix machines, it is available in the command line by
simply typing curl. For Windows machines, it is best to install Git
bash and access it through the Git bash command line. Installation
instructions for Git and Git bash can be found at http://git-scm.
com/downloads.

As can be seen from the preceding explanation, the RESTful components of HTTP
can define the basics for most APIs. The preceding REST approach is different from
other web service techniques or protocols and can be used by practically anything.
For their simplicity, REST-based web services are the best options. In this chapter,
the focus will only be on how to use AngularJS with a REST-based API.

Getting started with REST
Before jumping into how AngularJS communicates with a REST layer, it is important
to see how to communicate using standard tools within a browser. As you saw from
the previous definition, curl can be used to communicate to a REST API. Although
making a manual HTTP request outside of a browser is useful, you also need to
understand the basics of how a browser makes an API request without a framework.
In a browser, requests can be made to REST layers through asynchronous calls. This
allows requests that won't affect the other parts of the application to be made; that is,
the page won't freeze and become unusable. The web page remains useable while the
request is made.

http://git-scm.com/downloads
http://git-scm.com/downloads

Chapter 7

[143]

Browsers provide a mechanism to make asynchronous REST calls using an
XMLHttpRequest method. An XMLHttpRequest method can be used to make an HTTP
GET, POST, PUT, or DELETE request. Here is an example of how to make a GET request:

var request = new XMLHttpRequest();
request.open('GET', '/any/rest/endpoint');
request.send();

The preceding example creates a new request, specifies the request type and location,
and finally, sends the request. The missing piece is the handling of the response. Add
the following code just before the send method:

request.onreadstatechange = function(){
 if (request.readyState === 4) {
 console.log('received response with status: '+request.status);
 }
};

The preceding code handles when the request has received a response from the
server and is complete (readystate === 4). Within the condition given in the code,
you can handle the parsing of the response, the determining status of the request,
and so on.

What's great about the preceding code is that it doesn't require a framework. The
problem is that the code can grow in size and become repetitive for every request.
AngularJS has abstracted the request for you.

Testing asynchronous calls
Now that you understand how to make HTTP requests through the browser, we
need to understand how to test these calls. The preceding requests are asynchronous.
Asynchronous means there is no guarantee of when the function will complete. For
your reference, here is an example of synchronous sequential logic:

var synchronousFunc = function(){
 console.log('In synchronousFunc');
};
synchronousFunc();
console.log('After call to synchronousFunc');

When the preceding code is run, the output is as follows:

In synchronousFunc

After call to synchronousFunc

Give Me Some Data

[144]

Each function call occurs in the order of the call. With an asynchronous request,
the order is not guaranteed. A callback function is passed into a function to
inform you when a method is complete.

Callback functions have two main conventions. The first is the
jQuery-based method. The second is the Node.js method. The
jQuery convention uses two callbacks as the last arguments to a
method. The first callback is for success, and the second is for an
error. The Node.js convention is to use a single callback as the
last argument. The callback has two parameters, the first being
an error and the second being the successful result.
It is up to you to decide which convention to use based on what
you're developing for. Don't create your own new convention;
use one of the preceding conventions so that other developers
can easily understand and read your code.

Here is an example of the output of an asynchronous method:

var asynchronousFunc = function(callback){
 setTimeout(callback,0);
};
var callback = function(){
 console.log('In asynchronousFunc');
};
asynchronousFunc(callback);
console.log('After call to asynchronousFunc');

When the preceding code is run, the output is as follows:

After call to asynchronousFunc

In asynchronousFunc

The next sections will look at how test to asynchronous functions in Karma
and Protractor.

Creating asynchronous calls in Karma
From the preceding asynchronous example, it should be clear that the way in which
you test needs to be modified to account for asynchronous behavior. Luckily, this is
fairly straightforward when testing with Karma.

Chapter 7

[145]

Here are the steps to test the preceding asynchronous method using Karma:

1. Create the stub test using the following code:
describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

2. Create a spy to test when the asynchronous method gets called:
var spy = jasmine.createSpy();

3. Call the asynchronous method in the beforeEach function:
beforeEach(function(){
 var asynchronousFunc = function(callback){
 setTimeout(callback,0);
 };
 var callback = function(){
 spy();
 };
 asynchronousFunc(callback);
});

4. Add a callback to the parameters of the beforeEach function. By doing this,
you have made the function asynchronous:
beforeEach(function(done){
 …
});

5. Call the done method in the asynchronousFunc callback:
var callback = function(){
 spy();
 done();
};

6. Add the assertion function:
it('',function(){
 expect(spy).toHaveBeenCalled();
});

Give Me Some Data

[146]

The key to the preceding code is that a callback was passed into the beforeEach
function. You can try to run this test without the callback and see whether the test
will fail. A callback can be passed into the beforeEach, afterEach, describe, and
it methods.

You will be leveraging this example through the rest of the chapter, so be sure that
you understand the main concepts. Now that you have tested in Karma, the next
section will show you what Protractor offers from an asynchronous standpoint.

Creating asynchronous calls in Protractor
Protractor is different in the way it handles asynchronous actions. It has been
optimized to handle asynchronous actions, specifically, promises. As an example,
when a test navigates to a page, Protractor will wait until AngularJS has been
loaded until it starts running the tests. Julie Ralph, the main contributor and creator
of Protractor, sums it up in this GitHub issue (https://github.com/angular/
protractor/issues/716):

Protractor patches Jasmine so that it is automatically asynchronous, and a test case
finishes when the WebDriver queue of commands is finished.

What this means is that you don't have to think about how the calls are being
rendered and when the promises are complete. It even waits for $http requests
to complete. Here is an example of using Protractor:

describe('When I type in a search query', function(){
 var searchResult = element.all(by.repeater("result in results"));
 beforeEach(function(){
 browser.get("/index.html");
 $('input').sendKeys('any value');
 element(by.buttonText('search')).searchButton.click();
 });
 it('Should then add the result', function(){
 expect(searchResult.count()).toBe(1);
 });
});

The preceding code snippet is taken from Chapter 6, Tell the World. It highlights how
Protractor executes each one of the commands and takes care of the asynchronous
behaviors for you. In the next section, you will see how to make REST requests
using AngularJS.

https://github.com/angular/protractor/issues/716
https://github.com/angular/protractor/issues/716

Chapter 7

[147]

Making REST requests using AngularJS
Now that we have looked at what REST requests are and seen how to test
asynchronously in Karma and Protractor, it is time to see how to make a request in
AngularJS. At the lowest level, AngularJS provides the $http module. The module
allows you to make HTTP requests. By visiting the documentation (https://docs.
angularjs.org/api/ng/service/$http), we can see that it says the following:

The $http service is a core Angular service that facilitates communication with the
remote HTTP servers via the browser's XMLHttpRequest object.

As you have already seen how to make an XMLHttpRequest, you should feel at ease
that you know what is going on under the hood. Here is a simple example of how to
make an $http.get request in AngularJS:

$http.get('/any/rest/endpoint')
 .success(function(data,status,header,config){
 });
 .error(function(data,status,header,config){
 });

The success/error function is called asynchronously once the request is complete.

Using $http is not the only way to make a request. If an API is completely
REST-based, AngularJS provides the $resource module. A resource gets defined
and used as shown in the following steps:

1. Define a resource for a specific end point:
var thing = $resource('/any/rest/endpoint/:id',
{id: '@id'});

2. Make the HTTP GET request:
thing.get({id:1},function(aThing){
 …
});

The preceding example defines a resource that retrieves aThing based on an ID.
It then retrieves that data with a GET request.

Both of the preceding examples show you how to create requests in AngularJS.
You will be looking at the $http method in the remaining examples, but it is good
to understand the different ways in which requests can be created in AngularJS.

https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/api/ng/service/$http

Give Me Some Data

[148]

Testing with AngularJS REST
Now that you have seen how to make requests in AngularJS and how to test
asynchronously, you will need to look at how to put it together. The following
example looks at a specific service and then discusses how to test using Karma.

Testing the product service
The service that needs to be tested is as follows:

angular.module('anyModule')
 .service('productService', ['$http', function($http){
 return {
 search: function(query){
 return $http.get('/product/search');
 }
 };
 });

The preceding productService parameter provides an object search that takes in a
query and returns a $http promise. The product service can be used in a controller
as follows:

productService.search(query)
 .success(function(data){
 $scope.result = data;
 })
 .error(function(data){
 $scope.error = data;
 });

angular.module('anyModule')
 .controller('productController',['$scope','productService',
function($scope,productService){
 $scope.search = function(query){
productService.search(query)
 .success(function(data){
 $scope.result = data;
 })
 .error(function(data){
 $scope.error = data;
 });
 }]);

Chapter 7

[149]

The preceding use of the productService shows you that because an $http promise
is returned, you can use the success and error functions to define what needs to
occur after. Now that there is a controller and a service, the next section will show
you how to test the components.

Testing $http with Karma
The Karma test will look to confirm the behavior of productService if the $http
call is successful and is one to look at if an error occurs. The main difference between
this test and others that have been looked at so far is that you are creating a request
to something outside of AngularJS. This is a perfect case of use mocking. You can
set up a fake object around $http to test the success and error paths of the
request. AngularJS provides a mock object that can be used, which is Angular
mock's $httpBackend.

Here are the steps to create a positive test—when the request is successful:

1. Start with the test stub:
describe('',function(){
 beforeEach(function(){
 });
it('',function(){
});
});

2. Initialize the module:
beforeEach(function(){
 module('anyModule');
});

3. Inject $httpBackend and productService in the beforeEach function:
var $httpBackend = null;
var productService = null;
beforeEach(function(){
 module('anyModule');
inject(function(_$httpBackend_,_productService_){
 $httpBackend = _$httpBackend_;
 productService = _productService_;
 });
});

Give Me Some Data

[150]

4. Mock the GET successful request with an HTTP status code of 200 as follows:
it('',function(){
 $httpBackend.when('GET','/product/search').respond(200,'');
});

5. Set the expectation as follows:
it('',function(){
 …
 $httpBackend.expectGET('/product/search');
});

6. Make the call to productService using the following code:
productService.search('any');

7. Flush the request using the following code:
$httpBackend.flush();

As you can see, $httpBackend allows expectations and mock responses to be
controlled. To tie up loose ends, here are the additional expectations for a failed
request. Follow the steps to add expectations for a failed request:

1. Add the expectation stub to an asynchronous parameter:
it('',function(done){
});

2. Mock the GET unsuccessful request with an HTTP status code of 500:
$httpBackend.when('GET','/product/search').respond(500,'');

3. Call productService.Search:
productService.search('any');

4. Confirm that the error function gets called:
productService.search('any').error(function(){
 expect(true).toBe(true);
 done();
});

5. Flush the request:
$httpBackend.flush();

We have not added any other layers to the application and are able to confirm
how it will work during a successful and unsuccessful request. In the next section,
you will see how to test HTTP requests in Protractor.

Chapter 7

[151]

Mocking requests with Protractor
Now that unit tests for the backend are complete, you can move to the frontend
and test an HTTP request through Protractor. You might not always want to
do this. Protractor is supposed to test your site from an end-to-end perspective.
This means that all layers of the application will be touched. One benefit of the
following example is that it will help in cases where you haven't set up the backend
rest service. You can begin by laying out the page and interactions before the
backend is complete. This can help when you're just putting your site together.

In order to mock the backend HTTP layer for Protractor, we will use $httpBackend,
which is part of the ngMockE2E module and is used to mock the backend HTTP layer
for Protractor. The $httpBackend property used for Protractor is different from the
one used in the previous Karma test. To use end-to-end $httpBackend you will need
to inject ngMockE2E as a dependency into the application. For this reason, it is not a
viable solution to have in a production site.

Here are the steps that are to be mocked using $httpBackend in Protractor:

1. Add AngularJS and Angular mocks to the web page:
<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-mocks/
angular-mocks.js"></script>

2. Create a module and require ngMockE2E:
angular.module('anyModule', ['ngMockE2E'])

3. Add a run function that uses $httpBackend:
.run(['$httpBackend',function($httpBackend) {

4. Create the mock data:
.run(['$httpBackend',function($httpBackend) {
var products = [{id: 'id1',name:'product1'}, {id:
'id2',name:'product2'}];
}]);

5. Set the mock data request:
.run(['$httpBackend',function($httpBackend) {
var products = [{id: 'id1',name:'product1'}, {id:
'id2',name:'product2'}];
$httpBackend.whenGET('/product/search').respond(products);
}]);

Give Me Some Data

[152]

Now the request to /product/search will respond with the products defined in
the mock. This means that the application will work without the need for a backend
service and will be able to be tested as an application with a backend service. A
complete example using a mocked backend will be shown in the walk-through.

Displaying products with REST
All the core components of REST, asynchronous testing, and mocking HTTP
requests have been discussed. Now, the following walk-through will provide a full
example that will look at displaying products that are retrieved through an external
service. The example will ignore the creation of an external service and focus on the
data it provides: a list of products in a JSON format. The walk-through will take a
bottom-up approach so that the core data layer is worked out before adding the
UI elements.

Unit testing product requests
The approach from the unit level is to create a service to manage the HTTP requests
for products. The controller will then be built up the same way.

Setting up the project
Before writing tests, the project needs to have a structure. Here is what the initial
project structure looks like:

Chapter 7

[153]

Karma configuration
Now that the project template has been set up, a couple of adjustments need
to be made. The Karma configuration needs to use a headless browser and set
up the test files to the correct location. Open up karma.conf.js and make the
following changes:

1. Update the browsers section to PhantomJS for headless browser testing:
browsers: ['PhantomJS'],

2. Update the files section to include the unit test folders:
 files: [
'bower_components/angular/angular.js',
 'bower_components/angular-mocks/angular-mocks.js',
'app/**/*.js',
 'spec/unit/**/*.js'
],

Karma has been configured and the project template has been created. The next
step is to set up an API builder for the product data. This will allow for a consistent
interface to be used in a test where mocking data is required.

Using an API builder pattern
A builder is an object that is used to create another object; it will be used to create
test data. An API builder can reduce duplication and the time taken to create tests.
It provides a central way to handle methods and create data. If a builder is not used,
then every test written will have to have a separate distinct way of creating data.
This is an especially bad design when the API being used changes!

The product data API is defined by a single route/products. The expected response
is a list of products. Here are the steps to create a builder for the product API:

1. Create a new file in the spec folder named productDataBuilder.js:
$ touch productDataBuilder.js

2. Create a new function named productDataBuilder:
module.exports = function productDataBuilder() {};

3. Return an object with methods to set IDs, names, and to actually build
an object:
module.exports = function productDataBuilder() {
 return {

Give Me Some Data

[154]

 withId: function (id) {
 },
 withName: function (name) {
 },
 build: function () {
 }
 };
};

4. Initialize a basic product:
module.exports = function productDataBuilder() {
 return {
 _mockProduct: { id: 1, name: 'productName' },
 withId: function (id) {
 },
 withName: function (name) {
 },
 build: function () {
 }
 };
};

5. Have the setter commands update the mock product:
return {
 ...
withId: function (id) {
 this._mockProduct.id = id;
 return this;
 },
 withName: function (name) {
 this._mockProduct.name = name;
 return this;
 },
};

6. Have the build method return the mock data:
return {
build: function () {
 return this._mockProduct;
 }
};

Chapter 7

[155]

The builder allows you to use a fluent interface to create products. The simplest
use is as follows:

var productDataBuilder = require('../productDataBuilder');
var someProduct = productDataBuilder.build();

A more complicated use will be to set the ID and name to something such as
the following:

var productDataBuilder = require('../productDataBuilder');
var someProduct = productDataBuilder.withId(9999)
.withName('Product 9999');

The preceding productDataBuilder object will be used in the Karma test.

The product data service
It's time to get to the actual test. The same TDD life cycle that has been used
throughout the book will be used; test first, make it run, and make it better.
As the creation and testing of a service that uses HTTP has already been
discussed, this walk-through will be skipped. For reference, the tests are
in the code repository and the service is defined as follows:

angular.module('product')
 .service('productService', ['$http',function($http){
 return {
 getAll : function(){
 return $http.get('/products')
 }
 };
 }]);

With the service complete, the next step is to look at the controller and how to
actually make use of the HTTP data.

The product data controller
The next component needed is a controller so that the UI can use productService.
The controller needs to have one method to make the request for products. In the
method, it needs to set $result when the request is successful and $error when the
request is unsuccessful.

Give Me Some Data

[156]

Assembling the product controller test
Here are the steps to assemble the product controller:

1. Create a new test file for the product controller spec/productController.js:
$ touch spec/productController.js

2. Use the standard test stub:
describe('',function(){
 beforeEach(function(){
 });
 it(function(){
 });
});

3. Create variables for scope and $httpBackend:
var scope = {};
var $httpBackend = null;

4. Initialize the product module:
beforeEach(function(){
 module('product');
});

5. Get the $controller and $httpBackend:
beforeEach(function(){
 inject(function($controller,_$htttpBackend_){
 });
});

6. Set $httpBackend to the injected variable:
inject(function($controller,_$httpBackend_){
$httpBackend = _$httpBackend_;

7. Initialize the controller scope:
inject(function($controller,_$httpBackend_){
$httpBackend = _$httpBackend_;
$controller('ProductController',{$scope:scope});

Chapter 7

[157]

Getting products
The object under test is the controller's scope getAll method. Here are the steps to
call the method for a successful HTTP response:

1. For a successful HTTP response, use the builder to build a test product:
it('',function(){
 var testProduct = productDataBuilder().build();
});

2. Mock the HTTP request response to return testProduct:
$httpBackend.when('GET','/products').respond(200,
[testProduct]);

3. Call the object under test:
scope.getAll()

Now, the unsuccessful HTTP response requires an error response. Here are the steps
for the unsuccessful HTTP request:

1. Mock the HTTP request response to return testProduct:
it('',function(){
 $httpBackend.when('GET','/products').respond(200,
 [testProduct]);
});

2. Call the object under test:
scope.getAll()

The HTTP response has been covered, and the next step will assert the expectation.

Asserting product data results
An assertion can be used to require that an HTTP request receives a response. The
mocked $httpBackend property can call the flush() method to execute the HTTP
response synchronously, so you don't have to worry about asynchronous issues.
Here are the steps for the successful HTTP response expectation:

1. Flush the request:
$httpBackend.flush();

2. Expect the result variable on the scope object to have testProductData:
expect(scope.results[0]).toEqual(testProductData);

Give Me Some Data

[158]

Here are the assert steps for the unsuccessful HTTP response expectation:

1. Flush the HTTP request using the following code:
$httpBackend.flush()

2. Confirm that the scopes' error value has been set:
expect(scope.error).toEqual('error');

Now that the tests have been assembled, the next step is to make them run.

Making the product data tests run
Here are the steps to get the controller test running:

1. Run Karma:
$ karma start

2. The first error is Error: [ng:areq] Argument 'ProductController'
is not a function, got undefined. To rectify this, perform the
following steps:

1. This error means that ProductController doesn't exist.
Create a controller stub in app/productController.js:
angular.module('product')
.controller('ProductController',['$scope',function($scope){
}]);

2. Rerun the test.
3. This next error is TypeError: 'undefined' is not a function

(evaluating 'scope.getAll()'). To rectify this, perform the
following steps:

1. This error means that there is no function called getAll in the
controller. Add the function now:
.controller('ProductController',['$scope',function($scope){
$scope.getAll() = function(){
};
}]);

2. Rerun the test.

Chapter 7

[159]

4. The next error is Error: No pending request to flush!. To rectify this
error, perform the following steps:

1. This error occurs because the test is expecting an HTTP request
to be flushed but there is no request. Add productService to
controller so that the request will get made. Add productService
as a dependency:
.controller('ProductController',['$scope','productService',
function($scope,productService){

2. Add productService to the getAll function:
scope.getAll = function(){
productService.getAll();
};

3. Rerun the test.

5. The next error is Expected undefined to equal { id : 1, name :
'productName' }. To rectify this error, perform the following steps:

1. This error occurs because scope.results has not been set when
the product service was successful. Add a successful callback to
productService and set the scope's results variable:
productService.getAll()
.success(function(data){
$scope.results = data;
});

6. Now we're down to one failure, which is Expected undefined to equal.
To rectify this, perform the following step:

1. This error occurs because we haven't handled the error condition of
the HTTP request. Add the error condition of productService so
that it sets the scope's error:
productService.getAll()
 .success(function(data){
 $scope.results = data;
 })
 .error(function(error){
 $scope.error = error;
 })

7. Confirm that all the tests pass now.

Give Me Some Data

[160]

The unit tests for the product controller have been completed using a mocked
backend to test both positive and negative scenarios. The next step can be skipped,
as there were no callouts during development.

The next section will look at how to test from an end-to-end perspective.

Testing middle-to-end
Now that the unit level testing of the application is complete, the user facing tests can
be worked on. One of the benefits of Angular mocks is that it provides $httpBackend,
which can be used to mock data for end-to-end tests. As data is being mocked, it is
really a middle-to-end test. This is because only the UI interactions are being tested,
as the rest of the behavior has been mocked. This will allow us to create scaffolding
for the UI layer. Once the development is complete, the scaffolding can be removed
and a full end-to-end test can be put in place.

Here are the initial setup steps to create the application UI using a mocked backend
with Protractor:

1. Install Protractor:
$ npm install protractor

2. Update WebDriver:
$./node_modules/protractor/bin/webdriver-manager update

3. Copy the example's Chrome-only configuration:
$ cp ./node_modules/protractor/example/chromeOnlyConf.js .

4. Open up the chromOnlyConf.js and update the driver to point to the
node_modules directory:
chromeDriver:
'./node_modules/protractor/selenium/chromedriver',

5. Update the base URL variable:
baseUrl: 'http://localhost:8080/',

6. Update the test directory:
specs: ['spec/e2e/**/*.js'],

Chapter 7

[161]

7. Add ngMockE2e as a dependency to the product module in the app
or product.js file:
angular.module('product',['ngMockE2e'])

8. Set up the mock request:
.run(['$httpBackend',function($httpBackend) {
 var testProduct = productDataBuilder().build();
var products = [testProduct];
 $httpBackend.whenGET('/products').respond(products);
}]);

9. Create the index.html page using an HTML stub:
<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
</body>
</html>

10. Add the AngularJS references:
<script src="bower_components/angular/angular.js"></script>
</body>

11. Add the product module, controller, and service:
<script src="app/product.js"></script>
<script src="app/productService.js"></script>
<script src="app/productController.js"></script>

12. For mocking purposes, add Angular mocks and the product data builder:
<script src="bower_components/angular-mocks/angular-mocks.js"></
script>
<script src="spec/productDataBuilder.js"></script>

The initial's index page and mock has been set up. The next step will walk through
the TDD life cycle and get the application rocking.

Give Me Some Data

[162]

Test first
The first step in the life cycle is to create the tests using the 3 A's. The test confirms
that the product data will be visible on the page once a user pushes a button to get
the product data.

Assembling the product test
Here are the steps to assemble the Protractor test:

1. Create a new file for the test called spec/e2e/productScenario.js:
$ touch productScenario.js

2. Create the test stub:
describe('',function(){
 beforeEach(function(){
 });
 it('',function(){
 });
});

3. Browse the application:
beforeEach(function(){
 browser.get('/index.html');
});

4. Find the button that we will be selecting:
beforeEach(function(){
 var productButton = element(by.buttonText
('Get Products'));
});

Now that the test has been assembled, we can hit the object under test.

Getting products
The action of this test is to select the product button. As we have already retrieved
the button in the Assemble section, we can now click on it:

beforeEach(function(){
var productButton = element(by.buttonText('Get Products'));
productButton.click();
});

Finally, it is time to create the assertions and expectations.

Chapter 7

[163]

Expecting product data results
The assertion for this test is to ensure that the product data is now displayed.
Here are the steps:

1. Find the results:
var results = element.all(by.repeater
('result in results'));

2. Assert that the count is greater than 0:
expect(results.count()).toBeGreaterThan(0);

The test setup is complete. The next step is to make it run.

Making the product data run
As has been done with the other Protractor tests, one process will be running the
HTTP page and the other will be running the protractor test:

1. Install http-server so that we can run the website:
$ npm install http-server

2. Start the website:
$./node_modules/http-server/bin/http-server .

3. In another command window, run the protractor tests:
$./node_modules/protractor/bin/protractor chromeOnlyConf.js

4. The first error is Error: Angular could not be found on the page
http://localhost:8080/index.html : angular never provided
resumeBootstrap. To rectify this, perform the following steps:

1. The preceding error is due to the fact that we haven't referenced the
application module in the web page. Add the product module to the
body of the application:
<body ng-app='product'>

2. Rerun the tests.

5. The next error is NoSuchElementError: No element found using
locator: by.buttonText("Get Products"). To rectify this, perform
the following step:

1. Add the button:
<button>Get Products</button>

Give Me Some Data

[164]

6. The next error has hit the expectation and states Expected 0 to be
greater than 0. To fix this, we need to first add productController
to the page:
<div ng-controller='ProductController'>
 <button>Get Products</button>
</div>

7. The next step is to associate the button-click with the ProductController
classes scope to get all products:
<button ng-click='getAll()'>Get Products</button>

8. The final step is to display all results:
<div ng-repeat="result in results">
 {{result}}
</div>

The test now shows a successful result.

The make it better step will be skipped as there is nothing immediate that needs
to be refactored. At this point, the application is tested and operated using the
mocked data. You should be able to see how powerful this technique can be as
you're building up an application. The next section will look at removing the
scaffolding and using an actual backend.

Testing end-to-end
Remove the Angular mocks scaffolding and set up the test to actually connect to the
real server and setup.

The backend of Angular mocks allowed us to create the application without the need
to actually return data. Now that the application has been set up, we can remove the
scaffolding and create a real HTTP request for the data. Here are the steps:

1. Remove ngMockE2e and the mock response from the products module in
app/product.js:
angular.module('product',[]);
Remove Angular mocks and productDataBuilder from the
index.html page

2. Rerun the Protractor test.
3. The error states the failed expectation.

Chapter 7

[165]

Now that the mock HTTP response has been removed, we need to add an actual
request. Luckily for us, we don't have to use any other tool or framework and
can use the http-server module that we have been using the whole time. In a
real-world example, the product route would live in a separate service, but this
example will use a simpler approach for brevity.

Getting the product data
The http-server module, which is used to serve static content, can be extended to
serve static content as well. This allows us to set up a static file that mirrors a request
route. In this case, a single JSON file of products will be used. The products file will
have an array of product data. Here are the steps:

1. Create a new file named products in the root of the project:
$ touch products

2. Open the file and add the following content:
[{
 "id": 1,
 "name": "productName"
}]

Now, the /products route is available and will return an array of products. Rerun
the Protractor test, and confirm that it is passing. With these simple tests, we have
tested the application end-to-end and successfully removed the mock scaffolding.

This concludes the walk-through of using TDD to create an AngularJS REST layer.

Self-test questions
Q1. A callback function refers to a function that is called after an asynchronous
function completes.

1. True
2. False

Q2. An XMLHttpRequest cannot send or receive JSON.

1. True
2. False

Give Me Some Data

[166]

Q3. REST stands for:

1. Representational State Transfer
2. Nothing
3. Repeatable Endpoint State Transfer

Q4. Asynchronous functions always complete in the order in which they were called.

1. True
2. False

Q5. There are two different implementations of $httpBackend: one for unit and one
for end-to-end testing.

1. True
2. False

Summary
This chapter explained the details behind REST requests, asynchronous testing,
and the mocking of Angular HTTP requests in Karma and Protractor. It has brought
together many of the techniques and tools used throughout the book. Specifically,
it has showed us how to apply the TDD life cycle (test first, make it run, and make
it better) to incrementally build your applications to a specification and how to use
the 3A's (Assemble, Act, and Assert) to construct a test.

As you complete this book and go about applying the techniques in the real world,
remember that knowing what to test is just as important as knowing how to test.
This book has shown you how; it is up to you to practice and continue to improve
your development skills through TDD.

Integrating Selenium Server
with Protractor

Throughout this book, we used Selenium ChromeDriver to test with Protractor.
What this meant was that in order to run a Protractor test, we simply had to have
the website running and then kick off Protractor. In Chapter 3, End-to-end Testing
with Protractor, ChromeDriver was installed and used to run the tests. From the
perspective of the book and TDD, this was acceptable. Our tests were small and
contained and did not have a lot of moving parts.

The problem with only using ChromeDriver is that we can't test on other browsers.
As your application grows and you want to support more browsers, you need to
think about running a standalone Selenium Server. This section of the book provides
a walk-through of how to get a standalone Selenium Server running and integrated
with Protractor.

Installation
The good thing about installation is that we have already done it before. Every time
we installed ChromeDriver, the first thing we did was install Selenium. Here are the
standard steps:

1. Install the Protractor npm module:
$ npm install protractor

2. Install Selenium WebDriver:
$./node_modules/protractor/bin/webdriver-manager update

Integrating Selenium Server with Protractor

[168]

That's it. Selenium is now installed and is ready to be used. In the next section,
we will see how to update the Protractor configuration to use the Selenium
standalone server.

Protractor configuration
Luckily for us, we don't have to remember all the basic configurations for Protractor.
Within npm_modules, there are examples that we can use. Here are the steps to copy
the Selenium standalone configuration:

1. Open up the example Protractor configuration file that is located in the
following directory:
./node_modules/protractor/example/conf.js

2. Copy the file to your local test folder:
$ cp ./node_modules/protractor/example/conf.js

The configuration should look very similar to the chromeOnly configuration. Here is
a snippet of the important configuration items:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',

 capabilities: {
 'browserName': 'chrome'
 },
…
};

The first important item is the seleniumAddress object. The address is the hostname,
port, and location where the Selenium Server is running. The next important item
is the capabilities object. Browser-specific capabilities give you the ability to
define which browsers will be tested against. As we are not using the ChromeOnly
configuration, you can now choose Internet Explorer (IE), Firefox, and so on.
For more information on multiple browser support and capabilities, refer to the
Protractor documentation at https://github.com/angular/protractor/blob/
master/docs/browser-setup.md

https://github.com/angular/protractor/blob/master/docs/browser-setup.md
https://github.com/angular/protractor/blob/master/docs/browser-setup.md

Appendix A

[169]

In the next section, we will look at how to run Selenium.

The seleniumAddress object is meant to be configurable so that you
can have a separate instance in a completely different location than your
development machine. Visit the Selenium site for more information at
http://www.seleniumhq.org/.

Running Selenium
Selenium is quite straightforward to start. Once run, it can just sit in the background
while the tests are running:

1. Start the Selenium standalone service:
$./node_modules/protractor/bin/webdriver-manager start

2. The console window will display several information messages. Ensure the
following messages are displayed:

3. You should ensure that the default port used, as can be seen in the
RemoteWebDriver message in the preceding messages, is the same
as the one that is configured in the Protractor configuration:
 seleniumAddress: 'http://localhost:4444/wd/hub',

…

http://www.seleniumhq.org/

Integrating Selenium Server with Protractor

[170]

Let it run
Selenium is now running on the 4444 localhost port. In order to ensure that Protractor
can communicate with Selenium, let's run a simple test to ensure everything is
working. As we have done throughout the book, we will follow the TDD steps even
though this will be an extremely short and simple test. As Protractor is installed, the
only other prerequisite is to install an HTTP server. Install http-server using the
following command:

$ npm install http-server

Once it is installed, start the server:

$./node_modules/http-server/bin/http-server

Test first
The test will check whether the title of the page is equal to seleniumTestTitle.
Create a new Protractor test file named scenario.js.

Assemble
To set up the test, we need to navigate the browser to the root of the web application:

beforeEach(function(){
 browser.get("/");
});

There is no Act section as we will simply be checking that the loaded index page has
the title we need.

Assert
The assert needs get the title and compare it with the expected value:

it('',function(){
 expect(browser.getTitle()).toBe('seleniumTestTitle');
});

Make it run
Now that the test is prepared, we can start running the Protractor test through the
standalone Selenium Server. Here are the steps to run the Protractor test:

1. Add the test file to the Protractor configuration:
specs: ['scenario.js'],

Appendix A

[171]

2. Create an empty HTML page that will be used to make the test run:
<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>

</body>
</html>

3. Add the index page to the Protractor configuration:
specs: ['scenario.js','index.html'],

4. Run the test:
$./node-modules/protractor/bin/protractor conf.js

5. The first error is Angular could not be found on the page http://
localhost:8080/index.html : retries looking for angular exceeded.
To rectify this, perform the following steps:

1. AngularJS has not been added to the page. Install angular
through bower:
$ bower install angular

2. Add the AngularJS reference to the index.html page:
<script type="text/javascript"
 src="bower_components/angular/angular.js"></script>

3. Rerun the test.

6. The next error is Angular could not be found on the page http://
localhost:8080/index.html : angular never provided resumeBootstrap.
This error means that AngularJS couldn't load the main module of your
application. To rectify this, perform the following steps:

1. Add a simple module into the body tag:
<body ng-app='test'>

2. Initialize the module in the last tag:
<script type="text/javascript"
src="bower_components/angular/angular.js"></script>
<script type="text/javascript">
 angular.module('test',[]);
</script>

3. Rerun the test.

Integrating Selenium Server with Protractor

[172]

7. The next error has hit the expectation: Expected 'http://localhost:8080/index.
html' to be 'seleniumTestTitle'. Here are the steps to rectify this error:

1. Set the title of the web page to the expectation:
<title>seleniumTestTitle</title>

2. Rerun the test.

8. The Protractor output now reports 1 test, 1 assertion, 0 failures. With the
success of the test, we have now successfully shown you how to use the
Selenium standalone server.

Summary
This appendix has shown you how to set up and use the Selenium standalone
server. There are many options and advantages of using the standalone server.
The advantages are geared more for advanced testing when you want to use
a dedicated Selenium Server or a PaaS (Platform as a Service) or if you want to
test a functionality on different browsers and as the volume of your Protractor
tests grow. For more information, visit the Selenium home page at http://www.
seleniumhq.org/.

http://www.seleniumhq.org/
http://www.seleniumhq.org/

Automating Karma Unit
Testing on Commit

Running tests locally is one thing, but how do you know whether they will work on
someone else's computer. Setting up continuous testing and integration should be
part of every application you write. One of the best things is that the tools to set up
are free, easy to use, and best of all, they get to showcase your tests! The following
section will explore how to set up continuous integration using GitHub for source
control and Travis for continuous integration.

GitHub
GitHub is a source control, collaboration, and all-around awesome tool. For open
source projects, it is free. Once you sign up, you can get started and create a new
repository for your project. GitHub provides a Git URL for every project; the URL
can then be set up to push changes like any other Git repository. One of the benefits
of using GitHub is that it automatically provides hooks into other applications and
services. When setting up continuous integration and testing through Travis CI, you
will leverage the Travis CI GitHub hook.

Test setup
In order to run Karma properly, we will need to add the following development
dependencies:

• karma: The base Karma installation
• karma-jasmine: The test runner
• karma-phantomjs-launcher: The PhantomJS headless browser plugin we

discussed and set up in Chapter 5, Flip Flop

Automating Karma Unit Testing on Commit

[174]

Install the following Karma dev dependencies:

$ npm install karma --save-dev

$ npm install karma-jasmine --save-dev

$ npm install karma-phantomjs-launcher --save-dev

Test scripts
When using Travis CI, a script to run the tests needs to be defined. The best place to
define a script is in the package.json file. The package.json file is used in several
ways by node.js. Here are the steps to run the test:

1. The test script can then be run when you type the following command in the
command prompt:
$ npm test

2. Update the package.json scripts section as shown in the following
code snippet:
"scripts": {
 "start": "node app.js",
 "test" : "karma start --single-run --browsers PhantomJS"
}

3. Confirm that the test script works:
$ npm test

PhantomJS allows tests to run on the Travis CI servers without the need for a UI.
The following is a sample output:

The application setup is now configured to run unit tests via the npm test
command. This will be used by Travis CI to run the tests.

Setting the hook
GitHub provides several hooks into other applications. A hook allows you to
chain actions when a commit occurs. A hook is an extremely useful feature from a
continuous integration standpoint because we can set up the code to be tested on
every commit. Travis CI has a GitHub hook that can be easily set up on any GitHub
repository. The following is a walk-through on how to create a Travis CI hook on
your open source repository.

Appendix B

[175]

Creating the hook
Here are the steps to create the hook:

1. Create a Travis CI account by going to the Travis CI page at
https://travis-ci.org and click on Sign in with GitHub. Confirm the
questions it asks and continue.

2. Activate a GitHub Webhook to Travis CI. You can set up the Webhook in
Travis CI through your profile URL at https://travis-ci.org/profile

3. Turn the switch on. In the profile, you should see your repository.
 ° Here is a before view of Webhook (Switch off):

 ° Here is a view of the Webhook after it is enabled(Switch on):

Adding a Travis configuration file
Travis requires a configuration file to be at the root of your repository named
.travis.yml. The configuration file contains the source code language, language
versioning, metadata, and other information. The template configuration will
look as follows:

language: node_js
node_js:
 - "0.10"

Besides the basic configuration in the preceding code, additional setup is needed to
run Karma tests. The before_script configuration will be used to install Karma and
Bower prior to running any tests. Here is what the configuration needs to look like in
order to install Karma and Bower before any tests run:

language: node_js
node_js:
 - "0.10"

https://travis-ci.org
https://travis-ci.org/profile

Automating Karma Unit Testing on Commit

[176]

before_script:
 - npm install -g karma-cli
 - npm install -g bower
 - bower install

Now the tests are ready to be run. Add the preceding contents to a new file named
travis.yml. By default, the Node.js project will execute the npm test command
in Travis. This is why you don't need to specify the actual command to test
your application.

Please note that Travis CI is case sensitive.

The following screenshot is an example of what the preceding code looks like:

If you have any issues, go to the Travis CI Getting started guide at
http://docs.travis-ci.com/user/getting-started/.

http://docs.travis-ci.com/user/getting-started/

Appendix B

[177]

References
The following are some references that may help you with the concepts:

• This form of user specification is written using the Gerkin syntax. The Gerkin
syntax allows you to write the specifications in a well-formatted manner.
See the following link for more details: http://en.wikipedia.org/wiki/
Behavior-driven_development.

• The JavaScript Jabber homepage can be found at http://
javascriptjabber.com/106-jsj-protractor-with-julie-ralph/

• The GitHub page for http-server can be found at https://github.com/
nodeapps/http-server

http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
https://github.com/nodeapps/http-server
https://github.com/nodeapps/http-server

Answers

Chapter 1, Introduction to Test-driven
Development

Q1 2
Q2 1
Q3 1
Q4 1
Q5 2

Chapter 2, The Karma Way
Q1 2
Q2 2
Q3 2
Q4 2

Chapter 3, End-to-end Testing
with Protractor

Q1 1
Q2 1
Q3 1

Answers

[180]

Chapter 4, The First Step
Q1 1
Q2 2
Q3 1

Chapter 5, Flip Flop
Q1 3
Q2 3
Q3 1

Chapter 6, Telling the World
Q1 2
Q2 1
Q3 1

Chapter 7, Give Me Some Data
Q1 1
Q2 2
Q3 1
Q4 2
Q5 1

Index
Symbols
3 A's

act 39, 56
assemble 39, 56
assert 39, 56
for application to enter comments 70, 71
for comment adding specification 79
for comment liking specification 83, 84
reference link 12

$controller variable 35
$httpBackend property 150

A
AngularJS

about 5
installing 31

AngularJS REST, testing with
$http, testing with Karma 149, 150
about 148
product service, testing 148, 149

AngularJS routes
about 95, 96
directions, defining 96
flip flop test, assembling 98
setting up 96

AngularJS services 116
Angular mocks

installing 32
URL 32

application to enter comments
3 A's 70
about 69
controller 74, 75
directory, setting up 64

http-server setup 67
input, adding 74
Karma configuration 66, 78
module, adding 73
Protractor, installing 65
Protractor, setting up 65
setting up 64
specification, preparing 63, 64
test first scenario 70
test, improving 77
test, passing 76, 77
test, running 72

asynchronous calls
creating, in Karma 144-146
creating, in Protractor 146
testing 143, 144

async magic components, Protractor
about 59
assertion on elements 60
page, loading before test execution 60

B
beforeEach parameter 34, 55
bottom-up approach

about 67
using 116

Bower
about 30
installing 30, 31

broadcast
testing 119, 120

builder object 16
builder pattern 16

[182]

C
Cascading Style Sheets (CSS) 91
Chrome

about 47
URL 47

ChromeDriver. See Selenium ChromeDriver
comment liking specification

3 A's 83
about 82
test, coupling 88
test, improving 87
testing, with Protractor test template 82
test, running 84-86
unit tests, fixing 87

components, AngularJS
attributes 117
controllers 117
directives 117
services 117

controller
scope, initializing 69
test setup 68
testing 68

curl tool 142

D
describe property, Karma test 29
directions, AngularJS routes

ngRoute, configuring 96
route controllers, defining 97
route views, defining 98

Document Object Model (DOM) 61

E
emit

about 117
testing 118, 119

end-to-end testing
about 54, 164
assembling 137
development to-do list 55
passing 138, 139
product data, obtaining 165
saved products, confirming 137
save to cart action, invoking 137

specification, reviewing 54
TDD process 55
test web server, installing 53

events, search application
implementing 124
plan 124
product cart, creating 132
rebranding 124, 125
recently viewed items, viewing 125

expect property, Karma test 29

F
flip flop test, AngularJS routes

flip, asserting 99
improving 101
running 100
views flip, creating 99

Function Under Test 12
fundamentals, search application

Protractor locators 91

G
GitHub 173

H
headless browser testing, for Karma

preconfiguration 95
setting up 94, 95

HTTP methods
about 141
DELETE 142
GET 141
POST 141
PUT 142

http-server module 165

I
inject variable 35
installation

Karma 25
Protractor 47

it parameter 34, 55
it property, Karma test 29

[183]

J
Jasmine

about 23
cons 23
pros 23

Jasmine spy
used, for creating test double 13

JavaScript testing frameworks
about 22
Jasmine 23
Mocha 24
Selenium 23

JavaScript testing tools
about 21
Karma 21
Protractor 22

K
Karma

about 21, 22
birth 24
combining, with AngularJS 25
common installation/configuration

issues 28
configuration 26, 27
cons 22
features 24
initializing 32
installation, confirming 27-30
installing 25
karma.conf file 32
prerequisites, for installation 25
pros 22
testing, with 28, 29
URL 25

Karma configuration
about 115
file watching 116

Karma configuration, application to
enter comments

3 A's 78
input, binding 82
test chain, backing up 81
test, improving 80, 81

testing 78
test, running 80

Karma dev dependencies
installing 174
karma 173
karma-jasmine 173
karma-phantomjs-launcher 173

Karma unit testing
automating, on Commit 173
hook, creating 175
hook, setting 174
test scripts 174
test setup 173
Travis configuration file, adding 175, 176

Karma, using with AngularJS
about 30
AngularJS, obtaining 30
development to-do list 33
function, adding to controller 38
list of items, testing 33
TDD process 33
testing, with 33

M
messages

publishing 117
subscribing 117

middle-to-end testing
about 160, 161
product data results, expecting 163
product data, running 163
products, obtaining 162
product test, assembling 162
test first scenario 162

Mocha
about 24
cons 24
pros 24

N
Node.js

about 47
URL 25, 47

Node Package Manager (npm) modules 24

[184]

P
PhantomJS

URL 95
prerequisites, Protractor installation

Chrome 47
Node.js 47
Selenium WebDriver 47

product cart
controller test, running 136
creating 132
end-to-end testing 137
product saving, invoking 133
publisher test first 132
saved cart, confirming 136
saved cart event, invoking 135
save event, confirming 133
saveProduct test, passing 134
searchDetailController, assembling 133
subscriber unit test 134
test, assembling 135

product data controller
about 155
product controller test, assembling 156
product data results, asserting 157
products, obtaining 157

product data service 155
product requests, unit testing

about 152
API builder pattern, using 153, 155
Karma configuration 153
project, setting up 152

products, displaying with REST
about 152
product data controller 155
product data service 155
product data tests, running 158-160
product requests, unit testing 152

Protractor
about 22, 43
async magic components 59
birth 46
configuring 54
cons 22
end-to-end tests 53
features 46
gaps, cleaning up 59

origins 45
overview 43-45
pre-setup 52
pros 22
real test 51
setup 52
TDD, implementing with 51, 60, 61
URL 51

Protractor installation
about 47
common issues 51
configuration, confirming 50
performing 48
prerequisites 47
reference link, for guide 47
WebDriver, installing for Chrome 48, 49

Protractor locators
about 92
Angular locators 93
button text locator 92
CSS locators 92
link text locator 92
URL location references 93

publishing and subscribing
communicating, through events 121, 122
coupling, reducing 122, 123
issues 120
messages 117
scenarios 121

R
recently viewed items, end-to-end testing

about 130
assembling 130
confirming 131
improving 132
passing 131
search result, selecting 131
test first scenario 130

recently viewed items, viewing
about 125
end-to-end testing 130
test first scenario 125

recently viewed test
end-to-end testing 130
events, to be published 127

[185]

product, selecting 127
recently viewed items, viewing 125
SearchController, assembling 126
SearchController, creating 127
test first scenario 125
unit test 128
writing 125

recently viewed unit test
about 128
RecentlyViewedController, assembling 128
RecentlyViewedController, confirming 129
RecentlyViewedController, running 129
recently viewed item, invoking 128
writing 128

refactoring, TDD 6, 15
Representational State Transfer (REST)

about 141
getting started process 142

REST requests
creating, AngularJS used 147
mocking, with Protractor 151, 152
testing, with AngularJS REST 148

S
SaaS (Software as a Service) 47
Sauce Labs

URL 47
Scenario Runner 45
scope variable 35
search application

creating 93, 94
fundamentals 91
headless browser testing, setting up

for Karma 94, 95
search application, TDD way

about 101, 103
approach, deciding on 101
search query 101
search query HTML page 103
search query test 102

search results, search application
about 104
confirming 107
improving 110
route ID, confirming 110
route ID unit test, confirming 111

route ID unit test, setting up 110, 111
route parameters test, running 111, 112
search result routes, creating 104, 105
search result test, assembling 106
search result test, running 108, 109
selecting 106, 107
testing 106
testing, for location 109

Selenium
about 23
cons 23
installing 167
pros 23
Protractor configuration 168
running 169, 170
test first scenario 170
URL 23

Selenium ChromeDriver
using 167

Selenium WebDriver
about 47
installing 48, 49

success, measuring in TDD
steps, breaking down 6, 7
test first methodology 7

T
TDD

about 5, 51
applying 51
benefits 6
fundamentals 5
success, measuring 6
testing, techniques 11

TDD life cycle
about 8
development to-do list, creating 8
test first scenario 9
test, improving 11
test, running 9, 10
test, setting up 8

TDD process, end-to-end testing
3 A's 56
test first scenario 55
test, improving 59
test, running 57, 58

[186]

TDD process, for adding function
to controller

3 A's 39
about 38
test first scenario 38
test, improving 41
test, running 39, 40

TDD process, for testing list of items
3 A's 34, 35
test first scenario 33, 34
test, improving 38
test, running 36, 37

test double
about 12
arguments, testing 14
creating, Jasmine spy used 13
return value, stubbing 13
using 12

test-driven development. See TDD
testing techniques, TDD

about 11
building, with builder 16-18
refactoring 15, 16
test double 12
test double, using Jasmine spy 13
testing framework 12

test, Selenium
assemble 170
assert 170
running 170-172

toBeTruthy property, Karma test 29
top-down approach 68
Travis CI

configuration file 175
hook, creating 175
URL 176

Thank you for buying
AngularJS Test-driven Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2. Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3. Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
AngularJS applications.

Please check www.PacktPub.com for information on our titles

Dependency Injection with
AngularJS
ISBN: 978-1-78216-656-6 Paperback: 78 pages

Design, control, and manage your dependencies with
AngularJS dependency injection

1. Understand the concept of
dependency injection.

2. Isolate units of code during testing
JavaScript using Jasmine.

3. Create reusable components in AngularJS.

Instant RSpec Test-Driven
Development How-to
ISBN: 978-1-78216-522-4 Paperback: 68 pages

Learn RSpec and redefine your approach towards
software development

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to use RSpec with Rails.

3. Easy to read and grok examples.

4. Write idiomatic specifications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Test-driven Development
	An overview of TDD
	Fundamentals of TDD
	Measuring success
	Breaking down the steps
	Measure twice cut once

	Diving in
	Setting up the test
	Creating a development to-do list
	Test first
	Making it run
	Making it better

	Testing techniques
	Testing with a framework
	Testing doubles with Jasmine spies
	Stubbing a return value
	Testing arguments

	Refactoring
	Building with a builder

	Self-test questions (true/false)
	Summary

	Chapter 2: The Karma Way
	JavaScript testing tools
	Karma
	Protractor

	JavaScript testing frameworks
	Jasmine
	Selenium
	Mocha

	Birth of Karma
	The Karma difference
	Importance of combining Karma with AngularJS

	Installing Karma
	Installation prerequisites
	Configuring Karma
	Customizing Karma's configuration
	Confirming Karma's installation and configuration
	Common installation/configuration issues

	Testing with Karma
	Confirming the Karma installation

	Using Karma with AngularJS
	Getting AngularJS
	Bower
	Installing AngularJS
	Installing Angular mocks
	Initializing Karma

	Testing with AngularJS and Karma
	A development to-do list
	Testing a list of items
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better

	Adding a function to the controller
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better

	Self-test questions
	Summary

	Chapter 3: End-to-end Testing with Protractor
	An overview of Protractor
	Origins of Protractor
	End of life
	The birth of Protractor
	Life without Protractor

	Protractor installation
	Installation prerequisites
	Installing Protractor
	Installing WebDriver for Chrome

	Customizing configuration
	Confirming installation and configuration
	Common installation/configuration issues

	Hello Protractor
	TDD end-to-end
	The pre-setup

	The setup
	Test first
	Installing the test web server
	Configuring Protractor
	Getting down to business

	Cleaning up the gaps
	Async magic
	Loading a page before test execution
	Assertion on elements that get loaded in promises

	TDD with Protractor

	Self-test questions
	Summary

	Chapter 4: The First Step
	Preparing the application's specification
	Setting up the project
	Setting up the directory
	Setting up Protractor
	Setting up Karma
	Setting up http-server

	Top-down or bottom-up approach
	Testing a controller
	A simple controller test setup
	Initializing the scope

	Bring on the comments
	Test first
	Assemble
	Act
	Assert

	Make it run
	Adding the module
	Adding the input
	Controller
	Make it pass

	Make it better
	Implementing the Submit button
	Configuring Karma
	Test first
	Make it run
	Make it better
	Back up the test chain
	Bind the input

	Onwards and upwards
	Test first
	Assemble
	Act
	Assert

	Make it run
	Fixing the unit tests

	Make it better
	Coupling of the test

	Self-test questions
	Summary

	Chapter 5: Flip Flop
	Fundamentals
	Protractor locators
	CSS locators
	Button and link locators
	Angular locators
	URL location references

	Creating a new project
	Setting up headless browser testing
for Karma
	Preconfiguration
	Configuration

	Walk-through of Angular routes
	Setting up AngularJS routes
	Defining directions
	Assembling the flip flop test
	Making flip flop run
	Making flip flop better

	Searching the TDD way
	Deciding on the approach
	Walk-through of search query
	The search query test
	The search query HTML page
	The search application

	Show me some results!
	Creating the search result routes
	Testing the search results
	Assembling the search result test
	Selecting a search result
	Confirming a search result

	Making the search result test run
	Creating a location-aware test
	Making the search result better
	Confirming the route ID

	Self-test questions
	Summary

	Chapter 6: Telling the World
	Before the plunge
	Karma configuration
	File watching

	Using a bottom-up approach
	Services
	Publishing and subscribing messages
	Emitting
	Testing broadcast

	Publishing and subscribing – the good
and bad
	The good

	Harnessing the power of events
	The plan
	Rebranding
	Seeing recently viewed items
	Test first
	Making the search controller run
	Recently viewed unit test
	Making RecentlyViewedController run
	End-to-end testing

	Creating a product cart
	Publisher test first
	Making the saveProduct test pass
	Test for the subscriber first
	Making the cart controller test run
	End-to-end testing
	Making the cart's end-to-end test pass

	Self-test questions
	Summary

	Chapter 7: Give Me Some Data
	REST – the language of the Web
	Getting started with REST
	Testing asynchronous calls
	Creating asynchronous calls in Karma
	Creating asynchronous calls in Protractor

	Making REST requests using AngularJS
	Testing with AngularJS REST
	Testing the product service
	Testing $http with Karma

	Mocking requests with Protractor

	Displaying products with REST
	Unit testing product requests
	Setting up the project
	Karma configuration
	Using an API builder pattern

	The product data service
	The product data controller
	Assembling the product controller test
	Getting products
	Asserting product data results

	Making the product data tests run

	Testing middle-to-end
	Test first
	Assembling the product test
	Getting products
	Expecting product data results

	Making the product data run

	Testing end-to-end
	Getting the product data

	Self-test questions
	Summary

	Appendix A: Integrating Selenium Server with Protractor
	Installation
	Protractor configuration
	Running Selenium
	Let it run
	Test first
	Assemble
	Assert

	Make it run
	Summary

	Appendix B: Automating Karma Unit Testing on Commit
	GitHub
	Test setup
	Test scripts

	Setting the hook
	Creating the hook
	Adding a Travis configuration file

	References

	Appendix C: Answers
	Index

