ОКП 422160

УТВЕРЖДАЮ

(в части раздела 6 «Поверка»)
Технический директор
ООО «ИЦРМ»

УТВЕРЖДАЮ Директор АО «НПФ «Радио-Сервис»

Измерители сопротивления петли «фаза-нуль», «фаза-фаза» ИФН-300, ИФН-300/1

Руководство по эксплуатации РАПМ.411218.006РЭ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.C.34.158.A № 74217

Срок действия до 21 июня 2024 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Измерители сопротивления петли "фаза-нуль", "фаза-фаза" ИФН-300, ИФН-300/1

ИЗГОТОВИТЕЛЬ

Акционерное общество "Научно-производственная фирма "Радио-Сервис" (АО "НПФ "Радио-Сервис"), г. Ижевск

РЕГИСТРАЦИОННЫЙ № 75346-19

ДОКУМЕНТ НА ПОВЕРКУ РАПМ.411218.006РЭ

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **21 июня 2019 г.** № **1451**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства А.В.Кулешов

..... 2019 г.

Серия СИ

№ 036556

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления с устройством и принципом работы измерителей сопротивления петли «фаза-нуль», «фаза-фаза» ИФН-300, ИФН-300/1 (в дальнейшем – приборы) и содержит сведения, необходимые для правильной эксплуатации, меры безопасности, методику поверки и паспорт.

Приборы соответствует группе 4 по ГОСТ 22261.

Рабочие условия эксплуатации приборов:

- температура от минус 15 до плюс 50 °C;
 - верхнее значение относительной влажности 90 % при температуре плюс 30 °C.

Нормальные условия по п. 4.3.1 ГОСТ 22261:

- температура окружающего воздуха от плюс 15 до плюс 25 °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт. ст.).

Приборы выполнены в корпусе исполнения IP54 по ГОСТ 14254.

По безопасности приборы соответствуют ГОСТ IEC 61010-1-2014.

По электромагнитной совместимости приборы соответствуют ГОСТ Р 51522.1.

По стойкости к воздействию удара приборы соответствуют ІК08 по ІЕС 62262.

В связи с постоянным совершенствованием приборов, конструктивными изменениями, повышающими их надежность и улучшающими условия эксплуатации, возможны некоторые расхождения между выпускаемыми изделиями и конструкцией, описанной в данном РЭ.

ВНИМАНИЕ! Перед включением прибора ознакомьтесь с настоящим РЭ.

Корпус прибора имеет усиленную изоляцию,

1 Описание и работа

- 1.1. Приборы предназначены для:
- измерения напряжения переменного тока;
- измерения активного, реактивного и полного сопротивлений петли «фазануль» и «фаза-фаза»;
- вычисления прогнозируемого тока короткого замыкания петли «фаза-нуль» и «фаза-фаза», приведенного к напряжениям сети 220/380B, 230/400B или 240/415B;

Прибор ИФН-300 дополнительно измеряет электрическое сопротивление соединений проводников (далее – сопротивление металлосвязи).

1.2. Технические характеристики

1.2.1 Основные метрологические характеристики приведены в таблице 1.2.1.

Таблица 1.2.1 - Основные метрологические характеристики

1 Измерение напряжения переменного тока	
Диапазон измерения действующего значения напряжения, В	от 10,0 до 450,0
Пределы допускаемой основной абсолютной погрешности измерения напряжения переменного тока, В	±(0,025·U+3 е.м.р.)
Рабочий диапазон частот, Гц	от 45 до 65
2 Измерение активного, реактивного и полного сопротивлений п «фаза-фаза»	етли «фаза-нуль»,
Диапазоны измерений активного и реактивного сопротивлений	от 0,01 до 9,99
петли «фаза-нуль», «фаза-фаза», Ом	от 10,0 до 99,9
петли «фаза пуль», «фаза фаза», ом	от 100 до 200
Пиодороди и измородий додиого содротирдоция дотди «фородия»	от 0,01 до 9,99
Диапазоны измерений полного сопротивления петли «фаза-нуль», «фаза-фаза», Ом	от 10,0 до 99,9
«wasa-wasa», Oili	от 100 до 300
Пределы допускаемой основной абсолютной погрешности измерения активного, реактивного и полного сопротивлений цепей «фаза-нуль», «фаза-фаза», Ом	±{[0,03+0,0001(Ак/Z-1)]·А +4 е.м.р.}
Диапазон измерения сопротивлений согласно ГОСТ IEC 61557-3, Ом	от 0,14 до 300
Рабочий диапазон напряжения переменного тока, В	от 180 до 450
3 Вычисление ожидаемого тока короткого замыкания	
Диапазон вычислений ожидаемого тока короткого замыкания цепи «фаза-ноль», кА	от 0 до 22 кА
Пределы допускаемой основной абсолютной погрешности	$\pm (220/Z)^*(\delta_z/100\%)^{-1}$
вычисления ожидаемого тока замыкания цепи «фаза-ноль», А	$\pm (230/Z)^*(\delta_z/100\%)^2$
Диапазон вычислений ожидаемого тока короткого замыкания цепи «фаза-фаза», кА	от 0 до 38 кА
Пределы допускаемой основной абсолютной погрешности	$\pm (380/Z)^*(\delta_z/100 \%)^{-1}$
вычисления ожидаемого тока замыкания цепи «фаза-фаза», А	$\pm (400/Z)^*(\delta_z/100 \%)^{-2}$

4 Измерение электрического сопротивления постоянному току (металлосвязь) (только ИФН-300)				
Диапазон измерения сопротивления, Ом	от 0,01 до 999			
Пределы допускаемой основной абсолютной погрешности, Ом	±(0,03·R+3 е.м.р.)			
Диапазон измерения сопротивления согласно ГОСТ IEC 61557-4, Ом	от 0,13 до 999			
Ток в измерительной цепи для сопротивлений не более 10 Ом, мА	не менее 200			
Измерит. напряжение постоянного тока на разомкнутых гнездах, В От 9 до 12				

Дополнительные погрешности

Пределы допускаемых дополнительных относительных погрешностей измерений напряжения и частоты переменного тока, активного, реактивного и полного сопротивлений цепи «фаза-нуль» и «фаза-фаза», сопротивления постоянному току, вызванной изменением температуры в рабочем диапазоне, $\pm 1,5$ %.

Пределы допускаемых дополнительных относительных погрешностей измерений напряжения и частоты переменного тока, активного, реактивного и полного сопротивлений цепи «фаза-нуль» и «фаза-фаза», сопротивления постоянному току, вызванной изменением относительной влажности окружающего воздуха в рабочем диапазоне, ±1,5%.

Примечания:

е.м.р - единица младшего разряда

R, U - значения измеряемых, соответственно, сопротивления и напряжения

Ак – конечное значение диапазона активного, реактивного или полного сопротивлений, Ом;

- Z полное сопротивление петли «фаза-нуль или «фаза-фаза» (включая измерительные кабели), Ом
- А- значения измеряемых, соответственно, полного, активного или реактивного сопротивлений, Ом;
- δ_z предел относительной погрешности полного сопротивления петли «фаза-нуль» или «фаза-фаза», %
- 1, 2- Погрешность при выборе номинального напряжения 220/380В или 230/400В соответственно.
 - 1.2.2 Максимальный ток при проведении измерения петли «фаза-нуль» 16 А, при измерении петли «фаза-фаза» 28 А. Длительность протекания тока не более 20 мс при частоте переменного тока 50 Гц.
- 1.2.3 Перед проведением измерения параметров сети приборы производят контроль целостности и не допускают работу с цепями сопротивлением более 1 кОм.
- 1.2.4 При выключении приборы сохраняют, а при включении восстанавливают настройки последнего измерения.
- 1.2.5 Приборы записывают в память результат последнего измерения и отображают его в режиме «Просмотр памяти». Дополнительно ИФН-300 сохраняет до 10000 результатов измерений с возможностью обмена данными с внешним устройством (компьютером).
 - 1.2.6 Диапазон напряжения питания от 7,5 до 5,2 В.

Питание ИФН-300 осуществляется от штатного никель-металлогидридного (Ni-Mh) аккумулятора номинального напряжения «6 В», емкостью «2000 мА/ч» или от пяти сменных элементов питания типоразмера АА, устанавливаемых в батарейном

отсеке. Допускается применение пяти аккумуляторов типоразмера AA номинального напряжения «1,2 B».

Питание ИФН-300/1 осуществляется от пяти сменных элементов питания типоразмера AA, устанавливаемых в батарейном отсеке. Допускается применение пяти аккумуляторов типоразмера AA номинального напряжения «1,2 В».

- 1.2.7 Приборы имеют самоконтроль напряжения питания. При снижении напряжения от 5,2 до 5,0 В происходит отключение прибора.
- 1.2.8 Прибор ИФН-300 имеет режим зарядки аккумулятора, который включается автоматически при подключении сетевого блока питания из комплекта поставки прибора и отображается индикатором. Прибор обеспечивает защиту аккумулятора от перезарядки.
 - 1.2.9 Время готовности приборов при включении питания не более 4 с.
- 1.2.10 Время непрерывной работы приборов при цикле: измерение 1 минута, пауза 2 минуты, не менее 6 часов.
- 1.2.11 При неиспользовании прибора в течение от 2 до 3 минут происходит автоматическое выключение.
- 1.2.12 Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «средний».
 - 1.2.13 Мощность потребления не более 4,5 Вт.
 - 1.2.14 Масса приборов не более 0,8 кг.
 - 1.2.15 Габаритные размеры: ИФH-300 не более 65 x 105 x 245 мм;

ИФН-300/1 не более 88 х 105 х 245 мм.

- 1.2.16 Срок службы не менее 10 лет.
- 1.3. Комплектность

Таблица 1.3 - Комплект поставки

Наименование и условное обозначение	Количество
1 ИФН-300 или ИФН-300/1 РАПМ.411218.006 ТУ	1
2 Руководство по эксплуатации	1
3 Кабель РЛПА.685551.002 – измерительный, красный, длиной 1,5 м	1
4 Кабель РЛПА.685551.002-03 – измерительный, синий, длиной 1,5 м	1
5 Зажим типа «крокодил»	2
6 Блок питания (только для ИФН-300)	1
7 Элементы питания 1,5В АА (LR6) (только для ИФН-300/1)	5
8 Сумка для переноски	1
9 Упаковка транспортная	1
10 Батарейный отсек РАПМ.436244.007	1

Таблица 1.4 - Дополнительные аксессуары. Поставляются по отдельному заказу.

Наименование и условное обозначение
1 Штанга ШИИЭ L-6,0 (6м)
2 Штанга ШИИЭ L-8,0 (8м)
3 Катушка с красным проводом, длиной 8м, РАПМ.685442.004-04
4 Катушка с синим проводом, длиной 8м, РАПМ.685442.004-05
5 Катушка с красным проводом, длиной 10м, РАПМ.685442.004-02
6 Катушка с синим проводом, длиной 10м, РАПМ.685442.004-03
7 Bluetooth-USB адаптер (только для ИФН-300)

1.4 Устройство и работа

Органы управления, индикации и сигнальные разъемы располагаются на передней панели. Вся индикация прибора выводится на жидкокристаллический индикатор.

Прибор измеряет напряжение в цепи «фаза-нуль» или «фаза-фаза», падение напряжения на известной нагрузке и сдвиг фаз между напряжением и током. На основании этих данных производится расчет комплексного сопротивления петли «фаза-нуль» или «фаза-фаза», по которому в свою очередь вычисляется прогнозируемый ток короткого замыкания.

Измерение сопротивления постоянному току в ИФН-300 основано на измерении напряжения на нагрузке при протекании через неё испытательного тока. Рассчитанная величина сопротивления отображается на индикаторе и запоминается. Изменение величины испытательного тока, переключение диапазонов измерения и определение единиц измерения производятся автоматически.

Прибор автоматически устраняет погрешность, обусловленную сопротивлением кабелей измерительных. Для измерения сопротивления кабелей измерительных и цепей коммутации в приборе существует режим корректировки нуля, в целом идентичный режиму измерения сопротивления постоянному току. Измеренное значение сопротивления записывается в энергонезависимую память прибора и служит для коррекции результатов измерений в других режимах.

Прибор сохраняет в энергонезависимой памяти установки и режимы работы. После выключения и повторного включения прибор переходит в ранее активный режим. Прибор обеспечивает фиксацию и просмотр в дальнейшем результатов измерений.

Общий вид прибора приведен на рисунке 1.4.1.

Рисунок 1.1 - Общий вид ИФН-300 (слева) и ИФН-300/1 (справа)

1 – гнездо ⊖ ⊕ для подключения блока питания (центральный штырь – «минус»); 2 – защитная панель (защитная крышка); 3 – передняя панель; 4 – магнитный держатель для крепления к стальным поверхностям; 5 – ручка (крюк).

Расположение органов управления и разъёмов подключения измерительных кабелей показано на рисунке 1.4.2.

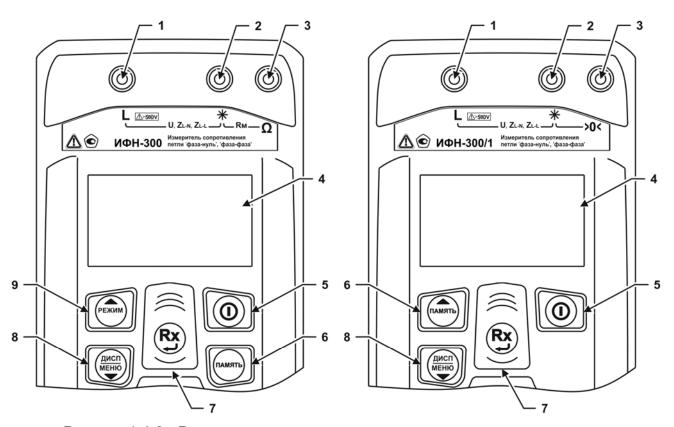


Рисунок 1.4.2 - Расположение разъёмов подключения и органов управления

- 1, 2, 3 гнезда для подключения кабелей;
- 4 жидкокристаллический индикатор;
- 5 (0) кнопка включение и выключение прибора;
- 6 кнопка память кнопка вызова функции работы с памятью: в ИФН-300 запись, чтение, удаление и передача на компьютер измеренных значений, в ИФН-300/1 чтение последних результатов измерения;
- 7 кнопка начало измерений. В меню кнопка выполняет функцию подтверждения выбранного действия либо возврата в основной режим.
- 8 кнопка переключение вида и объема отображаемой информации при измерениях сопротивление петли (см.п.2.4.2). При удержании более 3 сек вход в меню. В меню кнопка выполняет функцию движения по меню вниз.
- 9 кнопка режим переключение режимов: измерение сопротивление петли измерение сопротивления металлосвязи. В меню кнопка выполняет функцию движения по меню вверх.

1.5 Требования к маркировке и упаковке

Маркировка прибора соответствует ГОСТ 22261, ГОСТ IEC 61010-1-2014 и комплекту конструкторской документации (КД). Упаковка прибора соответствует ГОСТ 9181 и комплекту КД.

2 Использование по назначению

К эксплуатации допускаются работники из числа электротехнического персонала, обученные и аттестованные для работы в электроустановках и изучившие настоящее руководство по эксплуатации.

При работе с прибором необходимо соблюдать требования «Правил по охране труда при эксплуатации электроустановок» и применять средства защиты от поражения электрическим током согласно «Инструкции по применению и испытанию средств защиты, используемых в электроустановках».

ВНИМАНИЕ! Не допускается работать с неисправным, поврежденным и не проверенным прибором и нарушать порядок работы с ним.

2.2 Подготовка к работе

2.2.1 В случае если прибор находился при температуре отличной от рабочей, предварительно выдержать его при рабочей температуре в течении двух часов.

Прибор необходимо расчехлить и проверить на отсутствие механических повреждений и загрязнений. Проверить исправность защитных крышек и креплений, проверить целостность изоляции и отсутствие загрязнений кабелей. Проверить отсутствие механических повреждений и загрязнений на блоке питания.

При эксплуатации приборов необходимо перед работой очистить измерительные гнезда и поверхности вокруг них.

2.2.2 Зарядка аккумулятора в ИФН-300

Для питания прибора используется никель-металлогидридный аккумулятор «5H-AA2000B-1» с номинальной ёмкостью «2000 мА/ч».

Примечание. Перед зарядкой убедитесь, что в батарейный отсек установлен аккумулятор, а не батареи. Пренебрежение данным правилом может привести к повреждению батарейного отсека и батареи.

Примечание. Зарядка аккумулятора проводится при температуре окружающего воздуха от плюс 10 до плюс 30 °С. Пренебрежение данным правилом снижает ресурс аккумулятора.

Степень заряда аккумулятора отображается на индикаторе условным символом в виде «батарейки».

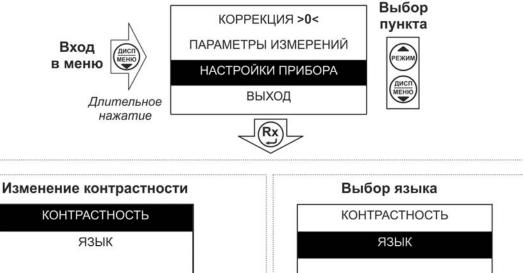
Для зарядки аккумулятора подключить выходной штекер блока питания из комплекта поставки прибора к гнезду «джек» прибора. Блок питания включить в сеть «220 В». Процесс заряда аккумулятора отображается заполнением символа «Батарея» на индикаторе. По завершению зарядки символ «Батарея» заполнен.

Для зарядки полностью разряженного аккумулятора требуется от 6 до 8 часов.

При длительном неиспользовании прибора рекомендуется один раз в три месяца проводить подзарядку аккумулятора.

Примечание. Зарядка штатного аккумулятора производится током от 400 мА до 500 мА. При зарядке аккумулятора с другой номинальной ёмкостью рекомендуется периодически проверять его температуру, например, на ощупь. При быстром подъёме температуры зарядку необходимо прекратить.

2.3 Работа с прибором


После включения и самотестирования прибора на его индикаторе сначала отображается версия программного обеспечения, затем прибор переходит в режим последнего перед выключением измерения.

Уровень напряжения питания отображается в виде символа «Батарея» в верхнем правом углу: площадь затемнения символа пропорциональна напряжению питания. Если на индикаторе появляется надпись «Аккумулятор разряжен. Отключение» и прибор выключается (напряжение питания ниже 5,2..5,0В), то необходимо зарядить аккумулятор согласно п. 2.2.2), заменить аккумулятор или батареи питания согласно п.3.1.

2.3.1 Управление и сервисные возможности (меню) прибора

Для входа в меню прибора нажмите и удерживайте кнопку . Меню контекстное - зависит от текущего режима измерения. Навигация по пунктам меню осуществляется с помощью кнопок и меню, редактирование выбранного пункта (выбранный пункт выделен инверсно) и подтверждение — по нажатию кнопки.

В пункте **«НАСТРОЙКА ПРИБОРА»** осуществляется изменение уровня контрастности индикатора и выбор языка интерфейса. Пример настройки показан на рисунке 2.1.

выход выход Rx **Установка** Выбор уровня, языка, КОНТРАСТНОСТЬ язык ввод ввод У РУССКИЙ **ENGLISH** Rx 72 выход Текущий язык

Рисунок 2.1 – Меню. Настройки прибора

В пункте «ПАРАМЕТРЫ ИЗМЕРЕНИЙ» (доступен только в режиме измерения сопротивления петли «фаза-нуль») осуществляются:

- выбор полного («Выводить все значения») или сокращенного («Выводить 1 значение») варианта отображения результатов в режиме измерения параметров петли «фаза-нуль», «фаза-фаза»;
- в пункте «U ном» производится установка номинального напряжения сети «220/380» (установлен по умолчанию), «230/400» или «240/415» для вычисления токов короткого замыкания.

Пример настройки показан на рисунке 2.2.

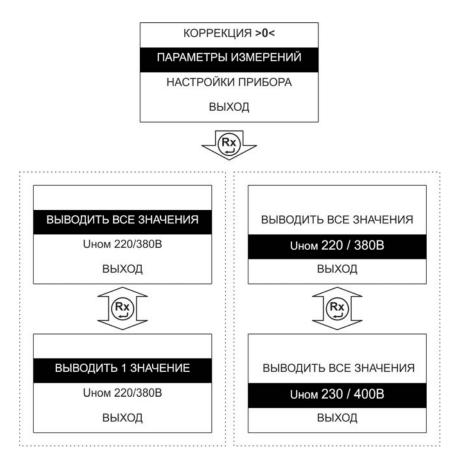


Рисунок 2.2 – Меню. Параметры измерений

В пункте **«КОРРЕКЦИЯ >0< »** осуществляется корректировка сопротивления измерительных проводов(см.п.2.4.4)

2.3.2 Работа с памятью ИФН-300

Память в приборе ИФН-300 организована в виде набора 100 нумерованных объектов, каждый из которых состоит из 100 нумерованных ячеек. Дополнительно, объектам и ячейкам с помощью программы RS-terminal (см. п. 2.3.3) могут быть присвоены собственные имена.

По завершению измерения, прибор в течение 20 секунд отображает результат последнего измерения. Для сохранения результата измерения нажмите кнопку появится меню записи в память согласно рисунку 2.3.

Если прошло более 20 секунд после окончания измерения или прибор выключился, то для просмотра последнего измеренного значения и его дальнейшей записи в память прибора нажмите кнопку память, выберите пункт «ПОСЛЕДНЕЕ ИЗМЕРЕНИЕ» и сохраните его в выбранной ячейке выбранного объекта согласно рисунку 2.3.

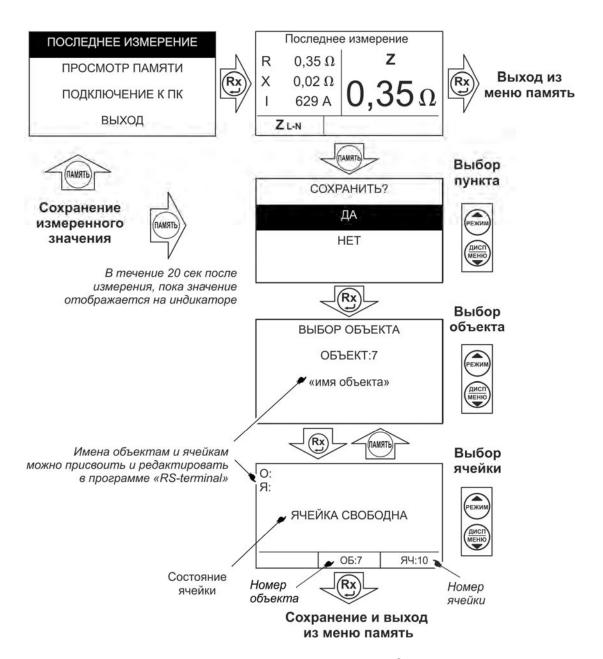


Рисунок 2.3 – Меню записи в память. Запись результата

2.3.3 Работа с компьютером (только для ИФН-300)

В приборе реализована возможность обмена данными с внешним устройством (компьютером) по беспроводной связи. Для передачи данных в ПК необходимо наличие устройства Bluetooth. При отсутствии встроенного устройства необходим внешний Bluetooth-USB адаптер.

Прием и передача производится средствами операционной системы компьютера. Данные передаются и сохраняются на ПК в виде текстовых файлов, содержащих информацию, хранящуюся в памяти прибора. Для удобства работы с данными используется специализированная программа «RS-terminal», которая позволяет присваивать собственные имена объектам и ячейкам (длина имени до десяти символов), генерировать отчеты и т.п. Программа и её подробное описание доступно для скачивания на сайте компании www.radio-service.ru.

Для обмена данными с компьютером необходимо:

- включить персональный компьютер и запустить программу RS-terminal;
- во включенном приборе войти в меню памяти, а в этой опции в пункт «ПОДКЛЮЧЕНИЕ К ПК»;
- в окне программы RS-terminal выбрать необходимые объекты и ячейки. Файл с результатами измерений может быть скопирован и отредактирован любым текстовым редактором.

Примечание — Компьютер должен располагаться в условиях прямой видимости на расстоянии не более 8 метров от прибора.

2.4 Проведение измерений

ВНИМАНИЕ! Действующее значение напряжения на измерительных гнездах прибора « L» и « **» должно быть не более 500 В. Несоблюдение этого правила может привести к выходу прибора из строя.

ВНИМАНИЕ! Перед проведением любых измерений следует убедиться в надежности и качестве соединений прибора с кабелями измерительными и исследуемыми цепями.

2.4.1 Измерение напряжения и частоты

После включения и выбора режима измерения сопротивления петли прибор переходит в режим вольтметра. Прибор автоматически измеряет и отображает на индикаторе действующее значение напряжения и частоты переменного тока между гнездами « L» и « ★». Пример индикации показан на рисунке 2.4.

Рисунок 2.4. - Измерение напряжения и частоты

2.4.2 Измерение параметров петли «фаза-нуль», «фаза-фаза»

ВНИМАНИЕ! Запрещается работа прибора в сетях с питанием от частотных преобразователей (см. примечание ниже).

ВНИМАНИЕ! При смене измерительных кабелей, а также периодически в процессе эксплуатации необходимо производить коррекцию нуля « >0< » прибора, как это описано в п.2.4.4.

Кнопкой режим выберите режим измерения параметров петли «фаза-нуль» («фаза-фаза»), на индикаторе в окне «режим измерения» появится символ **Z** L-N.

Подключите измерительные кабели к прибору и к исследуемой цепи «фазануль» как показано на рисунке 2.5. При этом на индикаторе прибора отобразится символ **Z** L-N, частота и действующее напряжение сети (рисунок 2.5 а).

Примечание- Проведение измерений в цепях L-PE, оборудованных УЗО, может приводить к их срабатыванию. Поэтому на время проведения измерений УЗО следует зашунтировать. После проведения измерений шунты необходимо удалить.

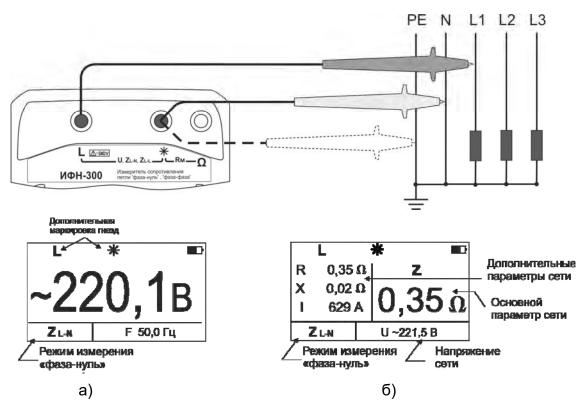


Рисунок 2.5 - Схема подключения и вид индикатора при измерении сопротивления петли «фаза-нуль»

Для проведения измерения нажмите кнопку . Далее прибор проведет проверку целостности цепи малым током, не допуская работу с цепями сопротивлением более 1 кОм (о чем свидетельствует сообщение «Цепь повреждена!» на индикаторе прибора), после чего произведет измерение.

Результаты измерения: Z- полное, R- активное, X- реактивное сопротивления цепи, I - прогнозируемый ток короткого замыкания отображаются на индикаторе (рисунок 2.5 б) в течение 20 секунд и могут быть записаны в ячейку памяти при нажатии кнопки память (см. п.2.3.2). После этого прибор переходит в режим измерения напряжения.

Циклический перебор выводимых на индикатор параметров осуществляется кнопкой меню.

Измерение параметров цепи «фаза-фаза» осуществляется аналогично измерениям «фаза-нуль». Схема подключения и вид индикаторов приведены на рисунке 2.6.

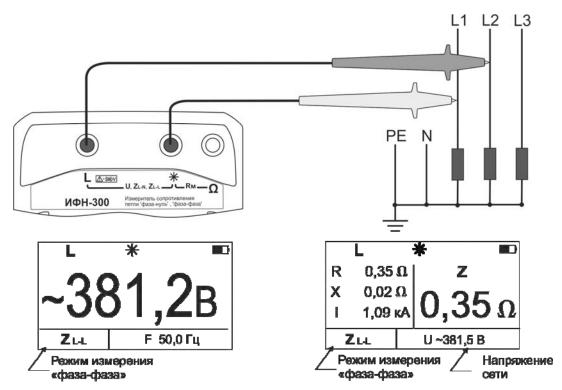


Рисунок 2.6 - Схема подключения и вид индикатора при измерении сопротивления петли «фаза-фаза»

Значительные колебания напряжения в сети могут вызывать от измерения к измерению нестабильность показаний измеренных параметров. В этом случае рекомендуется повторить проведение измерений в другое время, например, когда будут отключены мощные потребители. Дополнительно следует проверить качество всех соединений или провести серию из нескольких измерений и найти среднее значение искомого параметра.

В приборе имеется защита от перегрева измерительного резистора. Если его температура превысила верхний допустимый порог, на индикаторе появится мигающий символ **t°** и следующее измерение может быть произведено только после снижения его температуры до рабочей.

Примечание- В случае проведения измерений сопротивления петли «фазануль» или «фаза-фаза» в месте подключения потребителей после частотного преобразователя, например, на клеммах электродвигателя, на время проведения измерений необходимо отключить частотный преобразователь и смонтировать временные перемычки в обход него. Перемычки должны быть смонтированы проводом с сечением аналогичным отходящему.

2.4.3 Измерение сопротивления металлосвязи прибором ИФН-300

ВНИМАНИЕ! При смене измерительных кабелей, а также периодически в процессе эксплуатации необходимо производить коррекцию нуля « >0< » прибора, как это описано в п.2.4.4.

Кнопкой выберите режим измерения сопротивления металлосвязи «Rм». Подключите измерительные кабели согласно рисунку 2.7.

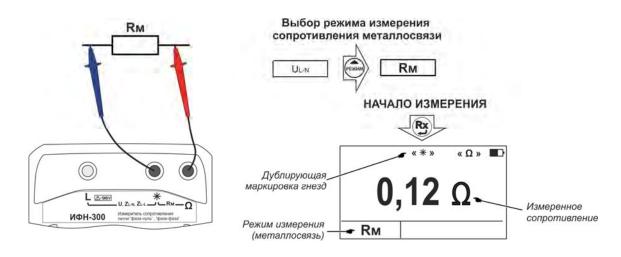


Рисунок 2.7 - Измерение сопротивления металлосвязи

Если уровень внешних помех на объекте измерения позволяет провести измерение с заданной точностью, то на индикаторе в режиме ожидания появляется символ ————. В противном случае на индикаторе появляется символ и проведение измерений блокируется.

ВНИМАНИЕ! Действующее значение напряжения на гнездах «*» - « Ω » не должно превышать **250 В**. Несоблюдение этого правила может привести к выходу прибора из строя.

Для проведения измерения нажмите кнопку . Результат измерения выводится на индикатор в течение 20 секунд и может быть записан в память прибора (см. п.2.3.2).

Следует помнить, что истинное сопротивление измеряемого объекта меньше показаний прибора на величину сопротивления измерительных кабелей и переходных сопротивлений в точках их подключения. Влияние сопротивления измерительных кабелей величиной не более 0,5 Ом на результат измерения корректируется путём вычитания значения их сопротивления, полученного в результате процедуры

коррекции «>0<» (см.п.2.4.4), из общего результата. Однако данная корректировка по точности измерений малых сопротивлений не заменяет четырехпроводный метод измерения.

Примечание - Если сопротивление объекта измерения значительно меньше сопротивления измерительных кабелей, то из-за различных погрешностей и ошибок могут индицироваться результаты измерения с отрицательным знаком.

2.4.4 Коррекция « >0< » прибора

В случае замены измерительных кабелей, а также периодически рекомендуется проводить процедуру коррекции нуля прибора.

Подключите измерительные кабели к гнездам «*» - «**Ω**» прибора ИФН-300 (см. рис. 2.9) или к гнездам «*» - «>**0**<» прибора ИФН-300/1. Войдите в меню, выберите пункт «Корр. >0<» и нажмите кнопку (После перехода в меню коррекции, выберите пункт «Корректировать», надежно замкните между собой концы измерительных кабелей и нажмите кнопку (Прибор произведет измерение сопротивления измерительных кабелей, запишет результат в память и включит режим коррекции нуля. После этого на индикаторе появляется символ «**>0**<», а в качестве результата будет отображаться разность между измеренным сопротивлением и сопротивлением измерительных кабелей.

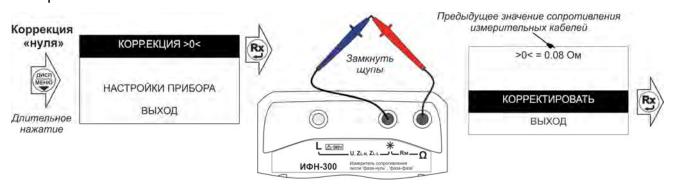


Рисунок 2.9 – Коррекция сопротивления измерительных проводов

ВНИМАНИЕ! Сопротивление кабелей измерительных не должно превышать 0,5 Ом. В противном случае калибровка блокируется, о чем свидетельствует соответствующее сообщение на индикаторе прибора.

3 Техническое обслуживание и устранение неисправностей

Обслуживание сводится к соблюдению правил эксплуатации и хранения.

Перечень возможных неисправностей и методы их устранения приведены в таблице 3.

Таблица 3 – Перечень возможных неисправностей и методы их устранения

Вид неисправности	Вероятная причина	Метод устранения
Прибор не включается	Разряжен аккумулятор (батарея)	Проверить напряжение аккумулятора (батареи), при необходимости провести зарядку (см. п.2.2.2) или замену (см. п.3.1)
	Установлена минимальная контрастность индикатора для данной температуры	Установить необходимую контрастность индикатора (см. п.2.3.1.1)
Пропала индикация	Сбой установки контрастности индикатора для данной температуры	Установить необходимую контрастность индикатора (см. п.2.3.1.1)
Аккумулятор не заряжается	Неисправность блока питания или аккумулятора	Проверить зарядное устройство, при необходимости заменить аккумулятор (см. п.3.1)
Прибор не реагирует на кнопки	Сбой в работе микро- процессора из-за воздействия предельнодопустимой импульсной помехи	Выключить на 5 секунд прибор и вновь включить. При необходимости отключить, а затем подключить аккумулятор (см. п.3.1)
Вычисленная	Прибор неисправен	Необходим ремонт
погрешность превышает предельную основную погрешность.	Прибор требует калибровки	Необходимо произвести калибровку (см. приложение А)
На индикатор выводится сообщение «Неисправен предохранитель!», после чего прибор выключается.	Неисправен предохранитель	Необходим ремонт

Ремонт прибора допускается только на предприятии – изготовителе или в специализированных ремонтных предприятиях.

3.1 Замена аккумулятора или элементов питания

Для замены элементов питания необходимо:

- извлечь винты крепления крышки аккумулятора;
- снять крышку и извлечь аккумулятор (батарейный отсек);
- разъединить разъём, идущий к аккумулятору (батарейному отсеку);
- заменить аккумулятор или элементы питания, восстановить соединение;
- собрать прибор в обратной последовательности;
- провести зарядку аккумулятора.

4 Транспортирование и хранение

Транспортирование прибора без ограничения дальности в штатной упаковке всеми видами транспорта. При транспортировании самолетом прибор должен быть размещен в герметичном отсеке.

Климатические условия транспортирования и хранения должны находиться в пределах температуры окружающего воздуха от минус 50 до плюс 70 °C при относительной влажности воздуха не более 90% при температуре плюс 30 °C. Воздействие атмосферных осадков не допускается.

5 Утилизация

Утилизация прибора производится эксплуатирующей организацией и выполняется согласно нормам и правилам, действующим на территории страны.

В состав прибора не входят экологически опасные элементы.

6 Поверка

6.1 Общие указания

Поверка прибора должна проводиться при его применении в сфере государственного регулирования обеспечения единства измерений. При использовании прибора вне сферы государственного регулирования обеспечения единства измерений допускается проведение калибровки.

Интервал между поверками (межповерочный интервал) - 2 года.

Допускается проведение первичной поверки приборов при выпуске из производства до ввода в эксплуатацию на основании выборки по ГОСТ Р ИСО 2859-10-2008.

Периодическая поверка средств измерений в Российской Федерации в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления владельца приборов, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

6.2 Операции поверки

Таблица 6.2.1 - Операции поверки

	Номер	Проведение операции при		
Наименование операции	пункта методики поверки	первичной поверке	периодической поверке	
1. Внешний осмотр	6.6.1	Да	Да	
2. Опробование	6.6.2	Да	Да	
3. Определение основной абсолютной погрешности измерений напряжения переменного тока	6.7.1	Да	Да	
4. Определение основной абсолютной погрешности измерений активного, реактивного и полного сопротивлений петли «фаза-нуль», «фаза-фаза»	6.7.2	Да	Да	
5. Определение основной абсолютной погрешности измерений электрического сопротивления постоянному току (металлосвязь) (для ИФН-300)	6.7.3	Да	Да	

- 6.3 Средства поверки
- 6.3.1 При проведении поверки должны применяться средства измерений, перечисленные в таблицах 6.3.1 и 6.3.2.
- 6.3.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 6.3.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 6.3.1 - Средства поверки

таслица с.с.т	оредства поверки
Номер пункта методики поверки	Тип средства поверки
6.6.1 - 6.6.2	Визуально
6.7.1	Установка для поверки амперметров и вольтметров на постоянном и переменном токе У300. Диапазон выходного напряжения переменного тока от 0,5 до 1000 В. Вольтметр универсальный цифровой GDM-8246. Пределы измерений напряжения переменного тока 0,5; 5; 50; 500; 1000 В. Пределы допускаемой абсолютной погрешности на пределах 50 и 1000 В ±(0,003·Г+30 е.м.р.) В
6.7.2	Установка для поверки амперметров и вольтметров на постоянном и переменном токе У300. Диапазон выходного напряжения переменного тока от 0,5 до 1000 В. Диапазон выходной силы переменного тока от 0,1 до 300 А. Вольтметр универсальный цифровой GDM-8246. Пределы измерений напряжения переменного тока 0,5; 5; 50; 500; 1000 В. Пределы допускаемой абсолютной погрешности на пределах 50 и 1000 В ±(0,003·U+30 е.м.р.) В. Пределы измерений силы переменного тока 500 мкА; 5; 50;500 мА; 2; 20 А. Пределы допускаемой абсолютной погрешности ±(0,005·U+15 е.м.р.). Омметр цифровой Щ34. Пределы измерений 100 Ом, 1 кОм, 10 кОм, 100 кОм, 1 МОм, 10 МОм, 100 МОм, 1 ГОм. Кл. т. 0,05/0,01. Испытательная индуктивность ИИ-1 РЛПА.685442.003 1)2)3) Испытательная индуктивность ИИ-2 РЛПА.685442.003-01 1)2)3) Провод соединительный. Сопротивление не более 0,3 Ом
6.7.3	Магазин электрического сопротивления Р4834. Диапазон воспроизведения электрического сопротивления от 10 ⁻² до 1,11·10 ⁵ Ом. Кл. т. 0,02

Примечания

Рекомендуемая форма аттестата приведена в приложении В

^{1) -} Изготовитель АО НПФ «Радио-Сервис».

²⁾ – Испытательные индуктивности ИИ-1, ИИ-2 должны быть аттестованы согласно приложению Б.

^{3)'}– Параметры испытательной индуктивности приводятся в аттестате.

Таблица 6.3.2 – Вспомогательные средства поверки

Измеряемая величина	Диапазон измерений	Класс точности, погрешность	Тип средства поверки
Температура окружающего воздуха	от 0 до 55 °C	±0,3 °C	Термометр ртутный стеклянный лабораторный ТЛ-4
Относительная влажность воздуха	от 10 до 100 %	±(2-6) %	Психрометр аспирационный M-34-M
Атмосферное давление	от 80 до 106 кПа	±0,2 кПа	Барометр-анероид метеорологический БАММ-1
Напряжение питающей сети переменного тока	от 5 до 462 В	±0,1 %	Измеритель электрических параметров качества, мощности и количества
Частота питающей сети	от 42,5 до 57,5 Гц	±0,01 Гц	электрической энергии телеметрический LPW-305-1

6.4 Условия поверки

Поверка должна проводиться при соблюдении следующих условий:

- температура окружающего воздуха от плюс 15 до плюс 25 °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт. ст.).

Сеть переменного тока должна соответствовать требованиям, изложенным в таблице 6.4.1.

Таблица 6.4.1. Требования к сети переменного тока

Наименование характеристики	Значение
Напряжение питающей сети переменного тока	от 198 до 242 В
Частота питающей сети	(50±0,5) Гц
Коэффициент несинусоидальности кривой напряжения, не более	2 %
Отклонение напряжения во время измерений, не более	0,5 %
Пульсация напряжения, не более	0,1 %
Полное сопротивление петли «фаза-нуль»	не более 0,7 Ом

6.5 Подготовка к поверке

Перед проведением поверки средства поверки должны быть поверены и подготовлены к работе согласно их руководствам по эксплуатации.

Устанавливать испытательные индуктивности следует таким образом, чтобы в радиусе 0,5 метра не располагались крупногабаритные предметы из ферромагнитных материалов.

Если до этого приборы находились в условиях отличных от нормальных, выдержать их в нормальных условиях в течение времени, установленного в руководствах по эксплуатации на данные приборы.

Включить приборы и выдержать время, необходимое для установления рабочего режима.

Испытательные индуктивности ИИ1, ИИ2 следует выдержать при температуре, при которой производится поверка прибора, в течение не менее 3 часов.

Убедиться в том, что сопротивление дополнительного соединительного провода, используемого при поверке, не превышает 0,03 Ом.

Все действия с прибором производятся в соответствии с настоящим РЭ с использованием кабелей измерительных из комплекта поставки прибора.

6.6 Порядок проведения поверки

6.6.1 Внешний осмотр

При проведении внешнего осмотра прибора установить:

- соответствие комплектности;
- отчетливую видимость всех надписей (маркировки);
- удовлетворительное крепление измерительных гнезд, электрических соединителей, стекла;
- отсутствие трещин, царапин, загрязнений мешающих считыванию показаний, грубых механических повреждений наружных частей корпуса прибора.

При наличии дефектов поверяемый прибор бракуется и подлежит ремонту.

6.6.2 Опробование

Целью опробования является проверка функционирования прибора, при этом опробованию подвергаются приборы, удовлетворяющие требованиям внешнего осмотра.

Включить прибор. В течение двух секунд на индикаторе приборов в правом нижнем углу индикатора будет отображаться номер версии программного обеспечения (ПО). Результат считается положительным, если версия ПО имеет номер не ниже «1.00».

Далее переключить прибор в режим «фаза-нуль». Подключить кабели измерительные к гнездам «L» и «★» прибора, затем подключить прибор к сети переменного тока 220 В, 50 Гц и убедиться в отсутствии на индикаторе предупреждающей надписи о неисправности прибора. Отключить прибор от сети.

Результаты опробования считаются удовлетворительными, если не обнаружено нарушений работоспособности прибора. После этого прибор допускается к поверке.

- 6.7 Поверка основных метрологических характеристик
- 6.7.1 Определение основной абсолютной погрешности измерений напряжения переменного тока.

Собрать схему измерений в соответствии с рисунком 6.7.1.

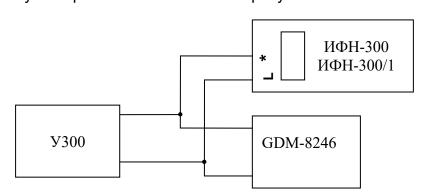


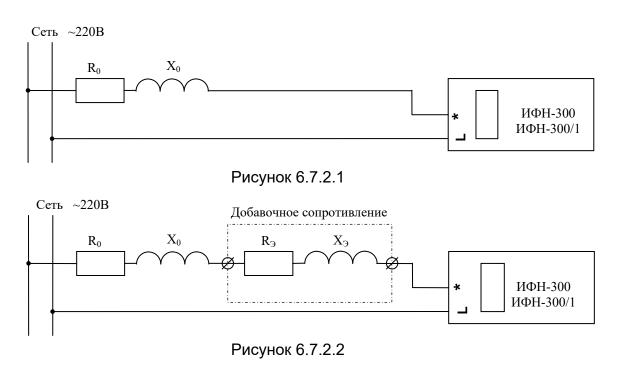
Рисунок 6.7.1 – Схема проверки погрешности измерений напряжения переменного тока

Поверяемый прибор должен находиться в режиме «фаза-нуль». Устанавливая на установке У300 напряжение величиной 20, 100, 200, 300 и 450 В частотой 50 Гц, измерять его эталонным вольтметром переменного тока и снимать показания с поверяемого прибора. Определить абсолютную погрешность измерений напряжения по формуле:

$$\Delta U = U_X - U_{3}$$

где U_X – показания прибора, B;

 U_{9} – показания эталонного вольтметра, В.


Результаты поверки считаются удовлетворительными, если погрешность измерений не превышает значений, указанных в таблице 1.2.1.

6.7.2 Определение основной абсолютной погрешности измерений активного, реактивного и полного сопротивлений петли «фаза-нуль», «фаза-фаза»

Метод основан на проведении серии измерений активного и реактивного сопротивлений на линии с низким внутренним сопротивлением и испытательными индуктивностями, имитирующими линии с различными активными и реактивными сопротивлениями.

Перед процедурой проверки следует провести корректировку нуля кабелей измерительных и дополнительного соединительного провода согласно п. 2.2.4 настоящего РЭ. Для этого подключить кабели измерительные к гнездам «Ω» - «*» прибора ИФН-300 или к гнездам «*» - «>0<» прибора ИФН-300/1, а дополнительный соединительный провод подключить к свободным клеммам кабелей измерительных.

Проверка производится по схемам, изображенным на рисунках 6.7.2.1 и 6.7.2.2

Подключить прибор к сети переменного тока, используя кабели измерительные и дополнительный соединительный провод (6.7.2.1). Провести серию из пяти измерений собственного активного и реактивного сопротивлений сети и вычислить их средние значения R_0 и X_0 соответственно.

На рисунках:

 R_0 и X_0 – активное и реактивное сопротивление сети, Ом;

 $R_{\rm 3}$ и $X_{\rm 3}$ – активное и реактивное сопротивление испытательных индуктивностей ИИ-1 и ИИ-2, Ом.

Произвести серию измерений суммарного активного (R_0+R_9) и реактивного (X_0+X_9) сопротивлений, поочередно подключая в качестве добавочного сопротивления (рисунок 6.7.2.2) испытательную индуктивность ИИ-1 гнездами X1-X2, ИИ-2 гнездами X1-X3.

Вычислить полное сопротивление сети и ИИ по формуле:

$$Z_{0+3} = \sqrt{(R_0 + R_3)^2 + (X_0 + X_3)^2}$$

Определить абсолютную погрешность измерений активного сопротивления:

$$\Delta R = R - R_0 - R_3,$$

где R – измеренное значение активного сопротивления, Ом;

R₀ – внутреннее активное сопротивление сети, Ом;

 $R_{\rm 3} = R_{\rm 30}^*(1+0,0039^*(T-T_0))$ – активное сопротивление испытательной индуктивности при температуре T, Oм;

 $R_{\rm 30}$ – активное сопротивление испытательной индуктивности при температуре $T_{\rm 0}$, содержится в аттестате испытательной индуктивности, Ом;

T₀ – температура, при которой производилась аттестация испытательной индуктивности, содержится аттестате испытательной индуктивности, °C;

T – температура окружающего воздуха на момент проведения поверки прибора, °C.

Для снижения влияния разогрева испытательной индуктивности от протекания измерительного тока прибора рекомендуется каждое ее последующее включение проводить после двухминутного перерыва.

Аналогично определить абсолютную погрешность измерений реактивного сопротивления по формуле:

$$\Delta X = X - X_0 - X_{\Im},$$

где X – измеренное значение реактивного сопротивления, Ом;

 X_0 – внутреннее реактивное сопротивление сети, Ом;

 $X_{\mathfrak{I}}$ – реактивное сопротивление испытательной индуктивности, содержится в аттестате испытательной индуктивности, Ом.

Аналогично определить абсолютную погрешность измерений полного сопротивления по формуле:

$$\Delta Z = Z_{0+3} - Z$$
,

где Z_{0+3} – полное сопротивление сети и ИИ, Ом;

Z – измеренное значение полного сопротивления, Ом.

Результаты поверки считаются удовлетворительными, если погрешность измерений не превышает значений, указанных в таблице 1.2.1.

6.7.3 Определение основной абсолютной погрешности измерений электрического сопротивления постоянному току (металлосвязи) (для ИФН-300)

Для проверки погрешности измерений сопротивления необходимо:

- подключить к гнездам «★» и «Ω» магазин сопротивлений Р4834;
- выбрать на приборе режим измерений сопротивления металлосвязи;
- установить эталонное сопротивление равным нулю, провести коррекцию нуля (см. п.2.4.4);
- установить на магазине эталонные сопротивления согласно таблице 6.7.3 и проводить измерение.

Результаты поверки считаются удовлетворительными, если показания прибора находятся в пределах допускаемой основной погрешности в соответствии с таблицей 6.7.3.

Таблица 6.7.3 - Пределы допускаемой основной абсолютной погрешности измерений

электрического сопротивления постоянному току (металлосвязи)

	y	,
Эталонное сопротивлени	Измеренное сопротивление (нижний предел)	Измеренное сопротивление (верхний предел)
0,20 Ом	0,16 Ом	0,24 Ом
0,95 Ом	0,89 Ом	1,01 Ом
1,10 Ом	1,04 Ом	1,16 Ом
9,50 Ом	9,19 Ом	9,82 Ом
11,0 Ом	10,4 Ом	11,6 Ом
95,0 Ом	91,9 Ом	98,2 Ом
110 Ом	104 Ом	116 Ом
950 Ом	919 Ом	982 Ом

6.8 Завершение поверки

Используя кабели измерительные, поставляемые в комплекте с прибором, произвести корректировку нуля согласно п. 2.4.4.

6.9 Оформление результатов поверки

Прибор, прошедший поверку с положительным результатом, признаётся годным и допускается к применению. В руководство по эксплуатации и (или) Свидетельство о поверке наносится знак поверки, производится запись о годности к применению и (или) выдается свидетельство о поверке по форме, установленной Приказом Минпромторга № 1815 от 02.07.2015 г.

При отрицательных результатах поверки прибор не допускается к дальнейшему применению, в паспорт вносится запись о непригодности его к эксплуатации, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Заместитель начальника отдела испытаний ООО «ИЦРМ»

Ю.А. Винокурова

7 ПАСПОРТ

7.1 Свиде	тельство о	приемке						
Измерите	ль сопротив	вления петл	и «фаза	а-нуль», «с	раза-фаза»	•		
<u>ИФН-30</u> ненуж	0 ИФН-3 ное зачеркнуть	00/1	№	заводской н	омер			
соответствует	технически	им условия	и РАПМ	И.411218.0	006ТУ и пр	оизнан	годным	для
эксплуатации.		Начал	ьник О∃	ГК				
M	п _	подпі	 1СЬ		Ф.И.	O.		
	_	число, мес	 яц, год	_				
Средство фаза» <u>ИФН-30</u> ненуж	измерений О ИФН-3 ное зачеркнуть		опрот	заводской н	омер			
		атов перві		•	признано	COOT	ветствую	щим
установленны Поверите		и типа метро	ологиче	ским треб	ованиям			
Поверите		дпись		(Ф.И.О.			
Дата перв	вичной пове		по, месяц,	год				
Знак повер	КИ							

7.3 Гарантии изготовителя

Предприятие-изготовитель гарантирует соответствие прибора требованиям технических условий РАПМ.411218.006ТУ при соблюдении правил эксплуатации, транспортирования и хранения.

Гарантийный срок эксплуатации прибора 36 месяцев с даты изготовления или даты продажи (при наличии соответствующей отметки о продаже), но не более 42 месяцев с даты изготовления.

Гарантийный срок эксплуатации продлевается на период от подачи рекламации до устранения неисправностей.

Гарантийный срок не распространяется на аккумулятор и элементы питания.

Реквизиты предприятия-изготовителя:
426000, Россия, г. Ижевск, а/я 10047, ул. Пушкинская, 268,
АО «НПФ «Радио-Сервис».
Тел. (3412) 43-91-44. Факс. (3412) 43-92-63.
Е-mail: office@radio-service.ru Интернет: www.radio-service.ru

Заполняется фирмой-продавцом:
Дата продажи ______
Наименование продавца ______
Адрес продавца ______

Телефон продавца _____

Место для печати

7.4 Значения основных параметров и характеристик

Основные метрологические и технические характеристики измерителя сопротивления петли «фаза-нуль», «фаза-фаза» приведены в пункте 1.2 руководства по эксплуатации РАПМ.411218.006РЭ соответственно.

7.5. Сведения о сертификации

На измеритель сопротивления петли «фаза-нуль», «фаза-фаза» выданы свидетельство об утверждении типа средств измерений ОС.С.34.158.А № 74217 от 25.06.2019г., декларация о соответствии № ЕАЭС№ RU Д-RU.AГ27.В.00013/19 от 15.04.2019г.

7.6 Утилизация

Утилизация измерителя сопротивления петли «фаза-нуль», «фаза-фаза» производится эксплуатирующей организацией и выполняется согласно нормам и правилам, действующим на территории страны. В состав прибора не входят экологически опасные элементы.

- 8 Сведения о движении прибора при эксплуатации
- 8.1 Сведения о движении прибора при эксплуатации приводят в таблице 4.

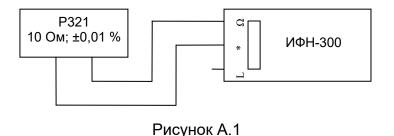
Таблица 4 - Сведения о движении прибора при эксплуатации

			Ha	работка		Подпись лица,
Дата установки	Где установлено	Дата снятия	с начала эксплуатации	после последнего ремонта	Причина снятия	проводившего установку (снятие)

10.2 Сведения о приеме и передаче прибора приводят в таблице 5.

Таблица 5 - Сведения о приеме и передаче прибора

Дата	Состояние прибора	Основание (наименование, номер и дата документа)	Предприятие, должность и подпись		Примечание
			сдавшего	принявшего	


Приложение A (обязательное)

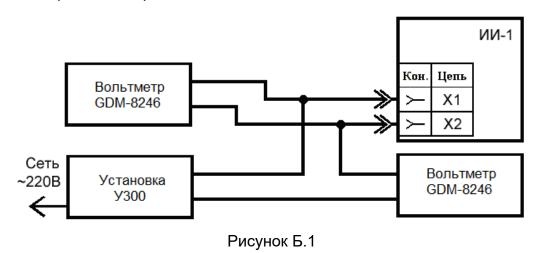
Калибровка прибора

Калибровка прибора осуществляется с помощью эталонной меры сопротивления - катушки электрического сопротивления Р321 (10 Ом, кл. т. 0,01). Перед проведением калибровки следует выдержать катушку и калибруемый прибор при комнатной температуре не менее 2 часов.

Для проведения калибровки следует выполнить следующие действия:

- -удерживая нажатой кнопку «Rx/д», включить прибор кнопкой «**①**»;
- -с помощью кнопок «МЕНЮ/▼» и «РЕЖИМ/▲» следует выставить трехзначное число индивидуальный для данного прибора пароль и нажать кнопку «Rx/¬». Индивидуальный пароль высылается предприятием-изготовителем по запросу уполномоченной организации;
- -подключить кабели измерительные к разъемам прибора «★» и «Ω». Свободные концы соединить друг с другом, обеспечив при этом хороший электрический контакт соединения;
- -нажать кнопку «Rx/¬». При этом на индикатор выводится ориентировочное суммарное сопротивление кабелей измерительных и внутренних цепей прибора. Если это сопротивление более 0,2 Ом, выводится сообщение «R проводов > 0,2 Ом», в таком случае следует сменить кабели;
- -подключить концы кабелей измерительных к катушке электрического сопротивления электрической, как это показано на рисунке A.1;
 - -нажать кнопку «Rx/¬», через 2 сек прибор перейдет к следующему этапу;
- –переключить кабели измерительные к разъемам прибора «**L**» и «**Ω**». Свободные концы соединить друг с другом. Нажать кнопку «Rx/, ⇒;
- -в случае успешного завершения процесса калибровки прибор индицирует сопротивление измерительного резистора, затем выключается.

Приложение Б (обязательное)


Инструкция по аттестации испытательной индуктивности ИИ-1 (РЛПА.685442.003) и испытательной индуктивности ИИ-2 (РЛПА.685442.003-01)

Испытательные индуктивности (далее - ИИ) должны подвергаться периодической аттестации с периодичностью не реже одного раза в год.

Перед проведением аттестации ИИ ее следует выдержать не менее 2 часов в помещении, в котором будет проводиться аттестация.

Аттестация ИИ-1 осуществляется в следующей последовательности.

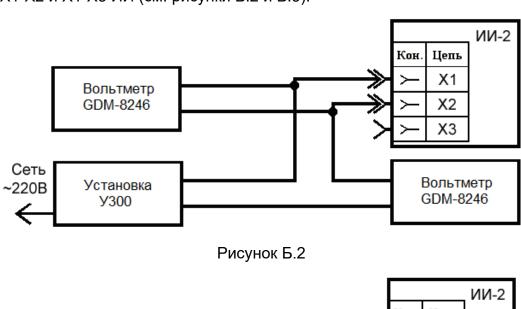
- 1 Измерить частоту F сети переменного тока 220 B, от которой питается установка У300, с помощью измерителя LPW-305-1.
 - 2 Измерить активное сопротивление R аттестуемой ИИ омметром Щ34.
- 3 Собрать схему измерений полного сопротивления ИИ методом амперметра—вольтметра в соответствие с рисунком Б.1, подключив последовательно к У300 аттестуемую ИИ с вольтметром GDM-8246 в режиме амперметра. Параллельно ИИ подключить второй вольтметр GDM-8246 в режиме измерений напряжения переменного тока.

- 4 Перевести установку У300 в режим выхода переменного тока и плавно выставить ток 0,1±0,02 А для ИИ-1 (РЛПА.685442.003) и 0,5±0,1 А для ИИ-2 (РЛПА.685442.003-01). Снять показания тока І в цепи и напряжения U на ИИ по показаниям вольтметров GDM-8246. Плавно убавить ток до нуля. Время измерений не должно превышать 10 секунд.
- 5 Выполнить пункт 4 три раза. Вычислить среднее арифметическое значение тока $I_{\text{cp.}}$ в цепи и напряжения $U_{\text{cp.}}$ на ИИ.

6 Рассчитать реактивное сопротивление ИИ по следующей формуле:

$$X = ((U_{cp.}/I_{cp.})^2 - R^2)^{0.5} * 50 / F$$
,

І_{ср.} – среднее значение тока через ИИ, А;


R – активное сопротивление ИИ, Ом;

F – частота сети переменного тока, Гц.

7 Измерить температуру окружающего воздуха вблизи ИИ термометром ТЛ-4.

8 Занести в аттестат ИИ обозначение гнезд, к которым производилось подключение X1-X2 или X1-X3, активное R и реактивное X сопротивления, а также температуру окружающего воздуха, при которой производилась аттестация. Рекомендуемая форма аттестата – в приложении В.

Для аттестации ИИ-2 следует выполнить пункты 1-8, подключая приборы к гнёздам X1-X2 и X1-X3 ИИ (см. рисунки Б.2 и Б.3).

Вольтметр GDM-8246

Сеть ~220В Установка у300

Вольтметр GDM-8246

Рисунок Б.3

Приложение В (рекомендуемое)

Форма Аттестата испытательных индуктивностей

Форма аттестата испытательных индуктивностей ИИ-1 (РЛПА.685442.003) и ИИ-2 (РЛПА.685442.003-01) имеет следующий вид:

Гнезда	Активное сопротивление, Ом	Реактивное сопротивление на частоте 50 Гц, Ом	Температура, ºС	Подпись Дата