

Sorbentex-Pb

Назначение:

- извлечение свинца из азотнокислых и солянокислых растворов.

Виды сорбента Sorbentex-Pb:

№	Носитель*	Размер частиц, мкм	Фасовка
1	стирол-дивинилбензольный LPS-500	150 – 250	от 1 г
2	стирол-дивинилбензольный Поролас-Т	400 – 1600	от 1 г
3	гидрофобизированный силикагель	250 – 500	от 1 г

^{*}Также изготавливаем сорбенты с учетом Ваших пожеланий в выборе других типов носителей и размеров частиц.

Физико-химические свойства:

- плотность 1,17 г/мл;
- максимальная емкость 37,8 мг Pb/г Sorbentex-Pb.

Эффективность Sorbentex-Pb по сравнению с аналогами определяется:

- более высокой плотностью сорбента по сравнению с аналогами, что упрощает работу с ним (сорбент не всплывает);
- минимальным вымыванием краун-эфира из сорбента;
- более высокими коэффициентами распределения.

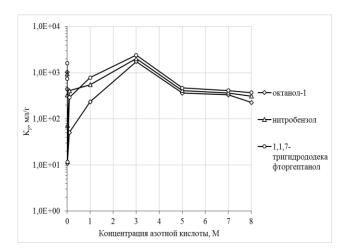
Для дополнительной информации смотрите результаты исследований ниже.

ООО «МИП «Sorbentex»

299011, Россия, г. Севастополь, ул. Капитанская, 2

Тел.: +79780323769 www.sorbentex.ru

e-mail: dovhyi.illarion@yandex.ru



ЛИТЕРАТУРНЫЕ СВЕДЕНИЯ

Sorbentex-Pb

Sorbentex-Pb – сорбент, предназначенный для селективного извлечения Pb. Представляет собой носитель, импрегнированный раствором ди-*трет*-бутил-дициклогексил-18-краун-6 (ДТБДЦГ18К6) в 1,1,7-тригидрододекафторгептаноле.

На рис. 1 представлены коэффициенты распределения свинца в зависимости от концентрации азотной (рис. 1 a) или соляной (рис. 1 δ) кислоты и типа разбавителя: октанола-1, нитробензола, 1,1,7-тригидрододекафторгептанола.

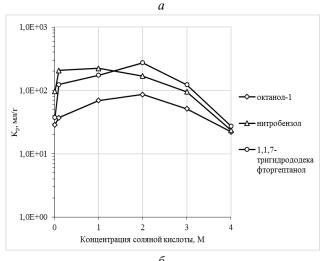
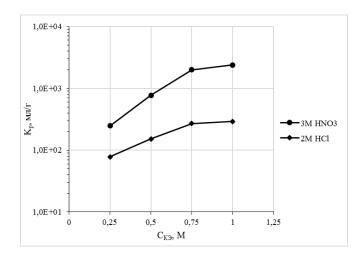



Рис. 1. Коэффициенты распределения свинца в зависимости от концентрации азотной (a) или соляной (δ) кислоты и типа разбавителя

Показана более высокая эффективность 1,1,7-тригидрододекафторгептанола. Максимальные показатели сорбции свинца достигаются при извлечении из 3 М азотнокислых и 2 М солянокислых растворов.

На рис. 2 представлены коэффициенты распределения свинца в зависимости от концентрации краун-эфира в разбавителе (сорбенте). Установлено, что при увеличении концентрации ДТБДЦГ18К6 от 0,75 М до 1 М параметры сорбции свинца практически не изменяются.

В табл. 1 приведены результаты сорбции свинца сорбентами Sorbentex-Pb на основе различных носителей (стирол-дивинилбензольного LPS-500 и гидрофобизированного силикагеля (ГС)). Показано, что сорбенты на основе LPS-500 имеют лучшие показатели сорбции.

Таблица 1 — Параметры сорбции свинца в зависимости от типа носителя

Носитель	Среда	K_p , мл/г	R, %
LPS-500	3 M HNO ₃	2030	95,3
	2 M HCl	271	73,0
ГС	3 M HNO ₃	549	84,6
10	2 M HCl	174	63,5

В табл. 2 приведены результаты сорбции свинца сорбентами Sorbentex-Pb, полученными с использованием различных растворителей (хлороформа, метанола).

Таблица 2 — Параметры сорбции свинца в зависимости от типа растворителя

Растворитель	Среда	K_p , мл/г	R, %
хлороформ	3 M HNO ₃	2030	95,3
хлороформ	2 M HCl	271	73,0
метанол	3 M HNO ₃	589	85,5
метанол	2 M HCl	197	66,3

Показано, что сорбенты, полученные с использованием хлороформа в качестве растворителя, имеют более высокие сорбционные характеристики, чем сорбенты, полученные с использованием метанола. В то время как в его аналоге Pb Resin используется метанол.