ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration MeisterWerke Schulte GmbH

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-MWS-20150245-CBE1-EN

Issue date 12.01.2016

Direct Pressure Laminate Floor Covering (DPL Floor Covering)

MeisterWerke Schulte GmbH

www.bau-umwelt.com / https://epd-online.com

General Information

Programme holder IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany Declaration number EPD-MWS-20150245-CBE1-EN This Declaration is based on the Product Category Rules: Floor coverings, 07.2014 (PCR tested and approved by the SVR) Issue date 12.01.2016 Valid to

Wermanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann (Managing Director IBU)

11.01.2022

Direct Pressure Laminate Floor Covering (DPL Floor Covering)

Owner of the Declaration

MeisterWerke Schulte GmbH Johannes-Schulte-Allee 5 59602 Rüthen-Meiste

Germany

Declared product / Declared unit

1m² of DPL floor covering (8 mm, 7.45 kg/m²)

Scope:

This Environmental Product Declaration refers to a specific DPL floor covering produced by MeisterWerke Schulte GmbH. Data are based upon production during 2014 in Germany (Rüthen-Meiste).

The laminate floor covering described in this EPD has a thickness of 8 mm and meets the requirements of the use class 32 according to /EN 13329, EN ISO 10874/.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR
Independent verification of the declaration
according to /ISO 14025/
internally x externally

Prof. Dr. Birgit Grahl

(Independent verifier appointed by SVR)

Product

Product description

DPL floor coverings described in this EPD are produced by MeisterWerke Schulte GmbH. The floor coverings meet the requirements of /EN 13329/.The MeisterWerke laminate floorings with a thickness of 7 -9 mm are hard flooring elements according to /EN 14041/ and /EN 13329/ which are produced in a DPL procedure. The planks consist of several layers which are joint together durably under use of pressure and heat. On the upper side there is a highly wear resistant wear-layer and the decor-layer. The middle-layer is a HDF (High Density Fiber) board made of wood based material. The products are equipped with an impregnated counterbalance on the backside. The decorative paper of a DPL floor covering can be printed with any design and gives the floor its individual appearance. MeisterWerke is distributing laminate floorings under the brands MEISTER (http://www.meister.com) or Schulte Räume (http://www.schulte-raeume.de). The laminate floor coverings described in this EPD meet the requirements of the Regulation (EU) No 305/2011. For the placing on the market in the EU/EFTA (with the exception of Switzerland) the Regulation (EU) No 305/2011

applies. The products have a Declaration of performance under consideration of /EN 14041/ and the CE-marking.

Application

The laminate floor covering described in this EPD is intended to be used within a building and meets the requirements of the use classes: 21-23, 31-33 according to /EN 13329/ and /EN ISO 10874/. For the application and use the respective national provisions apply.

Technical Data

Constructional data

Constructional data											
Name	Value	Unit									
Grammage	7.45	kg/m²									
Abrasion Class /EN 13329/	AC1-AC5	-									
Product Form	panel	-									
Thickness of the element	8	mm									
Length of the surface layer	500 - 2500	mm									
Width of the surface layer	100 - 500	mm									
Length and width of squared	250 - 900	mm									

elements		
Density	900 - 1100	kg/m³

Base materials / Ancillary materials

The composition of a DPL floor covering in mass % is:

- 92-94 % High Density Fibre board (HDF)
- 2-3 % paper
- 3-4 % resin
- <1 % corundum</p>

HDF (high density fibreboard)

The core board is an HDF board (density approx. 890 kg/m 3 ± 3%) composed of wood fibres and a thermosetting resin, mainly MUF (melamine-ureaformaldehyde) resin.

Paper

The renewable resource wood is the main raw material for paper production.

Resins

The used amino resins are melamine-ureaformaldehyde resins. Amino resins are thermosetting resins that are cured using heat and pressure.

Corundum

Bauxite is the mineral resource of corundum. By using aluminiumoxide (Al_2O_3) the surface layer of a laminate flooring obtains abrasion and wear resistance.

DPL floor coverings do not contain substances that are listed in the "Candidate List of Substances of Very High Concern for Authorisation" /REACH/.

Reference service life

The estimated service life of floor coverings depends e.g. on the type of floor covering and the area of application, the user and the maintenance of the product. Comparisons of different floor coverings are only allowed, if these parameters are considered in a consistent way. A minimum service life of 20 years can be assumed according to /BBSR/, technical service life can be considerably longer. The use stage is declared in this EPD for a one year usage.

LCA: Calculation rules

Declared Unit

The declared unit is 1m² laminate flooring (7.45 kg/m², thickness 8 mm)

Declared unit

Name	Value	Unit
Declared unit	1	m²
Conversion factor to 1 kg	0.133	-

System boundary

Type of EPD: cradle-to-gate - with options 1a) Declaration of a specific product from a single manufacturers' plant.

Modules A1-A3 include processes that provide materials and energy input for the system, manufacturing and transport processes up to the factory gate, as well as waste processing.

Module A4 includes the transport to the point of installation.

Module A5 includes packaging waste processing during the construction process. A waste treatment in a waste incineration plant is assumed. Potential benefits from energy substitution are declared in module D.

Module B2 includes the cleaning of the floor covering. Provision of water, cleaning agent and electricity for the cleaning of the floor covering is considered, incl. waste water treatment. The LCA results in this EPD are declared for a one year usage.

Module C is not applicable, because the DPL floor coverings reach the end-of-waste state after dismantling from the building.

Module D includes benefits from all net flows in the end-of-life stage that leave the product boundary system after having passed the end-of-waste stage. It is assumed that post-consumer DPL floor covering waste reaches the end-of-waste stage and is 100 % incinerated in a European biomass power plant. Loads

from material incineration and potential benefits from energy substitution (electricity and thermal energy) are declared within module D.

Module D contains the loads and benefits beyond the system boundaries excluding the biogenic CO_2 incorporated in the wood fraction of the DPL flooring. The incorporated CO_2 in the wood fraction is approx. 10 kg/m² and is declared in module C3.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

Factors for different thicknesses

The LCA results for the DPL floor covering declared in this EPD refer to a laminate flooring with a thickness of 8mm, which meets the requirements of the use class 32 according to /EN 13329/ and /EN ISO 10874/. In order to enable the user of the EPD to calculate the

Factors to calculate the results for module A1-A3 for different DPL floorings thickness 7mm 9mm Use class 31 32 **Parameter GWP** 1.22 0.82 ODP 0.84 1.17 AΡ 0.85 1.14 EP 0.86 1.12 **POCP** 0.86 1.14 **ADPE** 0.86 1.11 **ADPF** 0.86 1.12 **PERT** 0.85 1.14 **PENRT** 0.86 1.13

Factors to calculate the results for module A5 for different DPL floorings											
thickness 7mm 9mm											
31	32										
0.83	1.07										
0.83	1.07										
0.83	1.12										
0.83	1.07										
0.83	1.08										
0.83	1.24										
0.83	1.11										
0.83	1.12										
	7mm 31 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83										

results for different thicknesses and use classes, the factors in the following tables can be used for the calculation. For A1-A3, A4, A5 and D the LCA results of the declared product (thickness 8 mm) have to be multiplied with these factors. Module B2 stays the same.

Factors to calculate the results for module A4 for different DPL floorings										
thickness	7mm	9mm								
Use class	31	32								
Parameter										
GWP	0.85	1.15								
ODP	0.85	1.14								
AP	0.85	1.14								
EP	0.85	1.14								
POCP	0.85	1.14								
ADPE	0.85	1.15								
ADPF	0.85	1.15								
PERT	0.85	1.14								
PENRT	0.85	1.14								

Factors to calculate the results for module D for different DPL floorings														
thickness	thickness 7mm 9mm													
Use class	31	32												
Parameter														
GWP	0.85	1.15												
ODP	0.85	1.15												
AP	0.85	1.14												
EP	0.83	1.09												
POCP	0.85	1.15												
ADPE	0.85	1.15												
ADPF	0.85	1.14												
PERT	0.85	1.15												
PENRT	0.85	1.15												

LCA: Scenarios and additional technical information

0.84

1.11

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment.

Transport to the construction site (A4)

PENRT

Name	Value	Unit								
Litres of fuel (consumption per kg)	0.00159	l/100km								
Transport distance	250	km								
Capacity utilisation (including empty runs)	85	%								
Gross density of products transported	approx. 1000	kg/m³								

Installation in the building (A5)

Name	Value	Unit
Output substances following		
waste treatment on site packaging	0.356	kg
waste		

The amount of installation waste varies and is not declared in this EPD. For the calculation of the environmental impact of 1m² laminate flooring including a certain amount of installation waste the values for the production stage (A1-A3), delivery (A4) and end of life (D) have to be multiplied with the

amount of waste (e.g. 3% installation waste, factor 1.03).

Maintenance (B2)

Name	Value	Unit
Maintenance cycle (cleaning	120	Number/R
frequency per year)	times/year	SL
Water consumption (per year)	0.0068	m ³
Auxiliary (per year)	0.0507	kg
Electricity consumption (per year)	0.074	kWh

The common cleaning method for laminate floor coverings is damp mopping. Loose dirt should be removed by means of a dry mop or a vacuum cleaner. In case of higher requirements on hygiene (e.g. hospitals, care homes) or strongly frequented areas (shops) a need of a higher cleaning frequency is possible.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

100% of post-consumer waste (7.45 kg) is incinerated in a biomass power plant.

LCA: Results

The results for module B2 refer to a period of one year.

REPUTE STAGE	DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																					
PRODUCT STAGE ON PROCESS STAGE STAGE END OF LIFE STAGE BEYOND THE STAGE SYSTEM BOUNDARIES STAGE STAG	CONSTRUCTI																					
The color of the	11102001011102									END OF LIFE STAGE BEYOND T						OND THE						
A1	<u></u>		бг	the			Φ			t t		ergy	ater	uo			sing					
A1	terii	oort	turi	ron le si	bly		anc	٠ <u>≒</u>	mei		שער	e e	<u>×</u>	ucti	tion	oort	Ses	sal	ь́	ery- ing- tial		
A1	m ddn	สทร	ıfac	ort 1	sen) 	ıten	Seps	ace		bisi ona use		ion	nsti	ig	สทร	pro	ods	ens	cov		
A1	Raw S	Tra	auı	nsp ate	As		/air	L.	Sepl		etu	rati	eral	9	de	Ë	ste	Ω	œ	ag ag		
X	ш.		2	Trai					L	٥	צ	Ope	ð	۵			Wa					
Parameter	A1	A2	А3	A4	A 5	B1	B2	В3	B4	E	35	В6	B7	С	:1	C2	СЗ	C4		D		
Parameter																		MND		X		
Clobal warming potential Rg CO_Eq. 2.93E+0 9.23E-2 5.09E-1 1.15E-1 1.00E+1 5.48E+0	RESL	JLTS (OF TH	IE LCA	\ - EN	VIRON	MENT	AL I	MPACT	: 1	m² [DPL F	loor C	ονε	erinç	g (8 m	nm)					
Depletion potential of the stratospheric ozone layer				Param	eter				Unit		A	1-A3	A4		A	5	B2	C3	3	D		
Acidification potential of land and water [kg SO_Eq.] 2.33E-2 4.11E-4 6.53E-5 4.06E-4 0.00E+0 -5.16E-3 Eutrophication potential [kg (PO_4)*-Eq.] 5.45E-3 1.04E-4 1.06E-5 1.24E-4 0.00E+0 -3.20E-5 Formation potential of tropospheric ozone photochemical oxidants [kg ethene-Eq.] 3.53E-3 1.38E-4 5.21E-6 7.15E-5 0.00E+0 5.82E-4 Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.48E-6 3.62E-9 7.34E-9 5.79E-8 0.00E+0 -9.68E-7 Abiotic depletion potential for fossil resources [MJ] 1.13E+2 1.27E+0 1.03E-1 2.12E+0 0.00E+0 -9.68E-7 Abiotic depletion potential for fossil resources [MJ] 1.13E+2 1.27E+0 1.03E-1 2.12E+0 0.00E+0 -9.68E-7 Abiotic depletion potential for fossil resources [MJ] 1.13E+2 1.27E+0 1.03E-1 2.12E+0 0.00E+0 -0.06E+0 -1.08E+2 -0.00E+0 -1.00E+0 -1.00E+0		5																				
Eutrophication potential kg (PC)*-Eq. 5.45E-3 1.04E-4 1.06E-5 1.24E-4 0.00E+0 -3.20E-5							ayer		(g CFC11- [kg SO ₂ -F	Eq.j												
Formation potential of tropospheric ozone photochemical oxidants Ikg ethene-Eq. 3.53E-3 -1.38E-4 5.21E-6 7.15E-5 0.00E+0 5.82E-4 Abiotic depletion potential for non-fossil resources Ikg Sb-Eq. 1.48E-6 3.62E-9 7.34E-9 5.79E-8 0.00E+0 9.58E-7 Abiotic depletion potential for fossil resources IkJ 1.13E+2 1.27E+0 1.03E-1 2.12E+0 0.00E+0 -1.04E+2 RESULTS OF THE LCA - RESOURCE USE: 1m² DPL Floor Covering (8 mm) Parameter Unit A1-A3 A4 A5 B2 C3 D Renewable primary energy as energy carrier IkJ 5.51E+1 7.13E-2 1.21E-2 4.08E-1 0.00E+0 -1.83E+1 Renewable primary energy resources as material utilization IkJ 1.08E+2 0.00E+0 0.00E+0 0.00E+0 -1.08E+2 0.00E+0 Total use of renewable primary energy as energy carrier IkJ 1.06E+2 7.13E-2 1.21E-2 4.08E-1 -1.08E+2 -1.86E+2 Non-renewable primary energy as material utilization IkJ 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources IkJ 1.24E+2 1.28E+0 1.22E-1 1.44E+0 0.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources IkJ 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 -1.36E+2 1.24E+0 -1.82E+1 -1.36E+2 1.24E+0 -1.82E+1 -1.36E+2 -1.24E+0 -1.22E+1 -1.22E+1		710						-														
Abiotic depletion potential for non-fossil resources [kg Sb-Eq.] 1.48E-6 3.62E-9 7.34E-9 5.79E-8 0.00E+0 9.58E-7 Abiotic depletion potential for fossil resources [kJ] 1.13E+2 1.27E+0 1.03E-1 2.12E+0 0.00E+0 -1.04E+2 1.27E+0 1.27E+1 1.27E+0 1.27E+1 1.27E+0 1.27E+1 1.27E+0 1.27E+1 1.27E+0 1.27E+1 1.27E+0 1.27E+1 1.	Format	ion poter					ical oxida															
Parameter Unit A1-A3 A4 A5 B2 C3 D		Abiotic o	depletion	potential	for non-fo	ssil resou	rces															
Parameter									[MJ] 1.13E+2 1.27E+0					0.00E+0		-1.04E+2						
Renewable primary energy as energy carrier [MJ] 5.51E+1 7.13E-2 1.21E-2 4.08E-1 0.00E+0 -1.83E+1 Renewable primary energy resources as material utilization [MJ] 1.08E+2 0.00E+0 0.00E+0 0.00E+0 -1.08E+2 0.00E+0 Total use of renewable primary energy resources [MJ] 1.64E+2 7.13E-2 1.21E-2 4.08E-1 -1.08E+2 -1.83E+1 Non-renewable primary energy as energy carrier [MJ] 1.06E+2 1.28E+0 1.22E-1 1.44E+0 0.00E+0 -1.36E+2 Non-renewable primary energy as material utilization [MJ] 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources [MJ] 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 0.00E+0 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of nert fresh water [m²] 3.51E-2 1.25E-4 1.24E-3 9.39E-4 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of nert fresh water [m²] 3.51E-2 1.25E-4 1.24E-3 9.39E-4 0.00E+0 -2.67E-2 RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES: The standard of the	RESU	JLTS (OF TH	IE LCA	\ - RE	SOUR	CE US	E: 1	m² DPL	Flo	oor	Cove	ring (8	mr	n)							
Renewable primary energy resources as material utilization MJ 1.08E+2 0.00E+0 0.00E+0 0.00E+0 -1.08E+2 0.00E+0 Total use of renewable primary energy resources MJ 1.64E+2 7.13E-2 1.21E-2 4.08E-1 -1.08E+2 -1.83E+1 Non-renewable primary energy as energy carrier MJ 1.06E+2 1.28E+0 1.22E-1 1.44E+0 0.00E+0 -1.36E+2 Non-renewable primary energy as material utilization MJ 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Non-renewable primary energy resources MJ 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 0.00E+0 Non-renewable primary energy resources MJ 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 1.36E+2 Non-renewable primary energy resources MJ 0.00E+0 0.00																						
Total use of renewable primary energy resources MJ 1.64E+2 7.13E-2 1.21E-2 4.08E-1 -1.08E+2 -1.83E+1 Non-renewable primary energy as energy carrier MJ 1.06E+2 1.28E+0 1.22E-1 1.44E+0 0.00E+0 -1.36E+2 Non-renewable primary energy as material utilization MJ 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources MJ 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 -1.36E+2 Use of secondary material Rig 0.00E+0 0.00E+									_													
Non-renewable primary energy as energy carrier [MJ] 1.06E+2 1.28E+0 1.22E-1 1.44E+0 0.00E+0 -1.36E+2 Non-renewable primary energy as material utilization [MJ] 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources [MJ] 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 -1.36E+2 Use of secondary material [kg] 0.00E+0 0.00E+	Re							n														
Non-renewable primary energy as material utilization [MJ] 1.82E+1 0.00E+0 0.00E+0 1.00E+0 -1.82E+1 0.00E+0 Total use of non-renewable primary energy resources [MJ] 1.24E+2 1.28E+0 1.22E-1 2.44E+0 -1.82E+1 -1.36E+2 Use of secondary material [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of non-renewable secondary fuels [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Use of net fresh water [m³] 3.51E-2 1.25E-4 1.24E-3 9.39E-4 0.00E+0 0.00E+0 Use of net fresh water [m³] 3.51E-2 1.25E-4 1.24E-3 9.39E-4 0.00E+0 -2.67E-2 RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES:																						
Total use of non-renewable primary energy resources [MJ]																						
Use of secondary material [kg] 0.00E+0																						
Use of renewable secondary fuels [MJ] 0.00E+0 0.																						
Use of net fresh water [m³] 3.51E-2 1.25E-4 1.24E-3 9.39E-4 0.00E+0 -2.67E-2			Use of I	renewable	seconda	ary fuels			[MJ]	0.0	00E+0	0.			00E+0	0.	.00E+0	0.00E+	HO	0.00E+0		
RESULTS OF THE LCA - OUTPUT FLOWS AND WASTE CATEGORIES: 1m² DPL Floor Covering (8 mm)		ι					;		_													
DPL Floor Covering (8 mm) Parameter Unit A1-A3 A4 A5 B2 C3 D															24E-3	9	.39E-4	0.00E+	HO	-2.67E-2		
Parameter Unit A1-A3 A4 A5 B2 C3 D Hazardous waste disposed [kg] 5.62E-5 6.06E-7 3.76E-8 6.34E-7 0.00E+0 -4.76E-5 Non-hazardous waste disposed [kg] 1.18E-1 1.82E-4 5.98E-3 1.24E-2 0.00E+0 1.42E-2 Radioactive waste disposed [kg] 4.77E-3 1.74E-6 7.63E-6 1.27E-4 0.00E+0 -1.30E-2 Components for re-use [kg] 0.00E+0							FLOW	/S A	ND WA	STI	E C	ATEG	ORIES									
Hazardous waste disposed [kg] 5.62E-5 6.06E-7 3.76E-8 6.34E-7 0.00E+0 -4.76E-5 Non-hazardous waste disposed [kg] 1.18E-1 1.82E-4 5.98E-3 1.24E-2 0.00E+0 1.42E-2 Radioactive waste disposed [kg] 4.77E-3 1.74E-6 7.63E-6 1.27E-4 0.00E+0 -1.30E-2 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 September 3.76E-8 6.34E-7 0.00E+0 1.42E-2 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0	1m² DPL Floor Covering (8 mm)																					
Non-hazardous waste disposed [kg] 1.18E-1 1.82E-4 5.98E-3 1.24E-2 0.00E+0 1.42E-2 Radioactive waste disposed [kg] 4.77E-3 1.74E-6 7.63E-6 1.27E-4 0.00E+0 -1.30E-2 Components for re-use [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for recycling [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 0.00E+0 Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 7.45E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 6.71E-1 0.00E+0 0.00E+0 3.60E+1							- 1															
Radioactive waste disposed [kg] 4.77E-3 1.74E-6 7.63E-6 1.27E-4 0.00E+0 -1.30E-2 Components for re-use [kg] 0.00E+0 0																						
Components for re-use [kg] 0.00E+0																						
Materials for recycling [kg] 0.00E+0 0.00E+0 <td colspan="7"></td> <td></td>																						
Materials for energy recovery [kg] 0.00E+0 0.00E+0 0.00E+0 0.00E+0 7.45E+0 0.00E+0 Exported electrical energy [MJ] 0.00E+0 0.00E+0 6.71E-1 0.00E+0 0.00E+0 3.60E+1																						
Exported electrical energy [MJ] 0.00E+0 0.00E+0 6.71E-1 0.00E+0 0.00E+0 3.60E+1																						
									[MJ]	0.0	00E+0	0.	00E+0	1.5	56E+0	0.	00E+0	0.00E+	+0	4.31E+1		

References

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

PCR Part B

Institut Bauen und Umwelt e.V.: Requirements on the EPD for floor coverings, July 2014

EN 13329

EN 13329: 2009-01: Laminate floor coverings -

Elements with a surface layer based on aminoplastic thermosetting resins - Specifications, requirements and test methods

EN ISO 10874

ISO 10874:2009: Resilient, textile and laminate floor coverings - Classification

EN 14041

EN 14041:2004/AC 2006: Resilient, textile and laminate floor coverings - Essential characteristics

BBSR

Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR): Nutzungsdauer von Bauteilen für

Lebenszyklusanalyse nach Bewertungssystem Nachhaltiges Bauen (BNB), 2011

GaBi Software

thinkstep AG: GaBi Software-System and Database for the Life Cycle Engineering, Copyright, TM. Stuttgart, Echterdingen 1992-2015

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals

Regulation (EU) No 305/2011

Regulation (ÈU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr. 1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Germany | Web | www.bau-umwelt.com

Programme holder

thinkstep

Author of the Life Cycle Assessment

 thinkstep AG
 Tel
 +49 (0)711 341817-0

 Hauptstraße 111
 Fax
 +49 (0)711 341817-25

 70771 Leinfelden-Echterdingen
 Mail info@thinkstep.com

 Germany
 Web
 www.thinkstep.com

Owner of the Declaration

MeisterWerke Schulte GmbH
Johannes-Schulte-Allee 5
59602 Rüthen-Meiste
Germany

Tel +49 2952 816-0
+49 2952 816-66
info@meisterwerke.com
www.meisterwerke.com