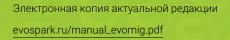

СВАРОЧНЫЙ АППАРАТ ДЛЯ РУЧНОЙ И МЕХАНИЗИРОВАННОЙ ЭЛЕКТРОДУГОВОЙ СВАРКИ

EVOMIG


РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

EVOMIG P3

EVOSPARK

Благодарим за выбор оборудования торговой марки EVOSPARK! Уверены, что оборудование не разочарует Вас техническими возможностями, удобством эксплуатации, производительностью, экономичностью, качеством сварки, надёжностью и простотой обслуживания.

Знакомство с настоящим Руководством позволит более полно использовать преимущества приобретенного оборудования.

Принцип наименований сварочных аппаратов EVOSPARK:

	EVOMIG XXX AAA	<u> </u>
Префикс торговой марки ————————————————————————————————————		
Модельный ряд аппартов для электродуговой механизированной сварки —		
Верхний предел регулирования сварочного тока при 100% ПВ в амперах —		
Программная комплектация —)

Соблюдение указаний и рекомендаций, изложенных в Руководстве по эксплуатации, обеспечит длительную и безопасную эксплуатацию оборудования.

Нарушение требований эксплуатации оборудования может привести к несчастным случаям и аварийным ситуациям.

Руководство по эксплуатации должно находиться в месте эксплуатации аппарата.

Настоящее Руководство включает правила монтажа, эксплуатации и техническое описание всех модификаций сварочных аппаратов EVOMIG во всех программных комплектациях, выпускаемых Производителем, а также описание дополнительного оборудования и программного обеспечения, которое может быть не включёно в заказанный вами комплект поставки.

При желании Заказчика программная конфигурация оборудования может быть модифицирована в условиях эксплуатации.

Панель управления аппаратов всего модельного ряда EVOMIG унифицирована.

Информация выводится на экран пульта управления символами и поясняющими надписями, что позволяет разобраться с настройками без дополнительного обучения.

Терминология приведена в соответствии с ГОСТ Р МЭК 60974-1-2012 «Оборудование для дуговой сварки. Часть 1. Источники сварочного тока».

Производитель оставляет за собой право вносить изменения в конструкцию оборудования и программное обеспечение с целью улучшения характеристик оборудования.

СОДЕРЖАНИЕ

1	Техника безопасности	7
2	Назначение аппарата	10
3	Условия эксплуатации	11
4	Расположение разъёмов на корпусе	12
5	Подготовка к работе	13
5.1	Блок жидкостного охлаждения	13
5.1.1	Технические характеристики БЖО	14
5.1.2	Монтаж и подготовка БЖО к работе	15
5.1.3	Замена охлаждающей жидкости	17
5.2	Устройство подачи проволоки	18
5.2.1	Технические характеристики УПП	19
5.2.2	Монтаж и подготовка УПП к работе	20
5.2.3	Заправка проволоки	21
5.3	Монтаж сварочного аппарата	22
5.4	Настройка сварочного аппарата	
6	Технические характеристики	27
7	Комплектация	
8	Инструкция к пульту управления	
8.1	Общий вид	
8.1.1	Органы управления	
8.1.1.1	Кнопки управления	32
8.1.1.2	Ручки управления	
8.2	Главный экран	
8.2.1.1	Блоки главного экрана	33
8.2.1.2	Регулировка основных параметров	
8.2.1.3	Корректоры сварочной дуги	
8.3	Кнопка ЗАДАНИЕ	
8.3.1	Алгоритмы работы с ячейками	
8.3.1.1	Сохранение	
8.3.1.2	Загрузка	
8.3.1.3	Удаление	

8.3.2	Кнопка ВИД СВАРКИ	39
8.3.2.1	Описание MIG/MAG	39
8.3.2.2	Описание ММА	39
8.3.2.3	Описание GOUGING	40
8.3.2.4	Описание TIG DC	40
8.4	Кнопка МАТЕРИАЛ	41
8.5	Кнопка РЕЖИМ	42
8.6	Кнопка ЦИКЛОГРАММА	44
8.6.1	Циклограмма для режима MIG/MAG	44
8.6.2	Циклограмма для режима CSC	46
8.6.3	Циклограмма для режима ручной дуговой сварки	49
8.6.4	Циклограмма для режима аргонодуговой сварки	51
8.7	Кнопка ТАКТ	53
8.7.1	Стандартный двухтактный режим	54
8.7.2	Двухтактный режим с ограничением времени	55
8.7.3	Контактное зажигание дуги	56
8.7.4	Стандартный четырехтактный режим	57
8.7.5	Четырехтактный режим с ограничением времени	58
8.7.6	Четырехтактный режим с продувкой газа	59
8.8	Кнопка МЕНЮ	60
8.8.1	ОХЛАЖДЕНИЕ	60
8.8.2	ВИД ТОКА	61
8.8.3	ОШИБКИ	61
8.8.4	ГОРЕЛКА	61
8.8.5	СПЯЩИЙ РЕЖИМ	61
8.8.6	КОРРЕКЦИЯ СКОРОСТИ	61
8.8.7	ВЕРСИЯ ПО	62
8.8.8	СБРОС НАСТРОЕК	62
8.8.9	ОГРАНИЧЕННЫЙ РЕЖИМ	62
8.8.10	УПРАВЛЕНИЕ КАРТАМИ	62
8.9	Кнопка БЛОКИРОВКА	62

9	Инструкция к пульту управления ВПУ	63
9.1	Общие сведения	63
9.2	Режимы работы ВПУ	64
9.2.1	Режим настройки	64
9.2.2	Режим отображения ошибки	65
9.2.3	Режим индикации	65
9.2.4	Режим HOLD	65
10	Система ограничения доступа	65
10.1	Принцип ограничения доступа	65
10.2	Уровень доступа «Администратор»	66
10.3	Уровень доступа «Пользователь»	66
11	Неисправности	67
11.1	Коды ошибок	67
11.2	Устранение неисправностей	73
11.3	Неисправности БЖО	77
12	Техническое обслуживание	78
12.1	Перед началом работ	78
12.2	Не реже одного раза в три месяца	78
12.3	Не реже одного раза в шесть месяцев	79
13	Гарантии производителя	80
14	Транспортировка и хранение	81
15	Утилизация	81
16	Сведения о сертификации	82
17	Производитель	82

1 ТЕХНИКА БЕЗОПАСНОСТИ

Несоблюдение правил и мер, отмеченных знаком **ОПАСНОСТЬ!**, влечёт угрозу серьёзных травм и угрозу жизни персоналу.

Пункты, отмеченные знаком **ВНИМАНИЕ!**, требуют повышенного внимания и осторожности. Несоблюдение правил и мер влечет угрозу травмирования персонала и вывода оборудования из строя.

ОПАСНОСТЬ! ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ!

Высокое напряжение может стать причиной поражения электрическим током. Поражение электрическим током влечет опасность для жизни и здоровья.

- Запрещается прикасаться к частям, находящимся под напряжением!
- Запрещается использовать нештатные приспособления, нештатные и неисправные переходники, удлинители, разъёмы и т. п.
- Запрещается работа без подключения заземления, а также с использованием нештатного или неисправного заземления.
- Запрещается производить вскрытие корпуса, подключения кабелей и дополнительного оборудования не убедившись в отключении аппарата от сети.
- К работе с аппаратом допускается только квалифицированный персонал, изучивший правила эксплуатации электроустановок и настоящие Руководство.

ОПАСНОСТЬ! ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ!

Лица, имеющие кардиостимуляторы и другие медицинские приборы, должны проконсультироваться у врача перед началом работ с аппаратом.

ВНИМАНИЕ! ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ!

Аппарат испытан и соответствует требованиям Технического регламента ТС 020/2011 «Электромагнитная совместимость технических средств». Тем не менее, расположенные вблизи работающего аппарата чувствительные к электромагнитному излучению приборы и устройства (компьютеры, станки с ЧПУ и т. п.) желательно экранировать.

ОПАСНОСТЬ! ПОЛУЧЕНИЕ ТРАВМ ПОД ДЕЙСТВИЕМ ИЗЛУЧЕНИЯ ДУГИ!

Излучение дуги опасно для кожи и глаз.

- При контакте с горячими деталями и искрами могут возникнуть ожоги.
- Сварщики должны использовать спецодежду, сварочные щитки или маски.
- Работающий поблизости персонал должен быть защищен огнеупорными занавесами или перегородками.

ОПАСНОСТЬ! ОПАСНОСТЬ ВЗРЫВА!

Вещества в закрытых сосудах в результате нагрева создают повышенное давле-

ние.

- Следует удалить из рабочей зоны ёмкости с горючими или взрывоопасными жидкостями!
- Следует использовать только защитные газы и смеси, рекомендованные для выполняемого сварочного процесса.
- Следует использовать регуляторы давления газа, рекомендованные изготовителем для использования с тем или иным защитным газом, а так же соответствующие давлению в баллоне.
- Все шланги, разъёмы и кабели должны быть исправными и иметь соответствующие технические характеристики.
- Газовый баллон всегда должен находиться в вертикальном положении. В рабочем состоянии его необходимо надежно закрепить на транспортной тележке или на стационарном основании.
- Следует располагать газовые баллоны вдали от участков, где они могут подвергнуться механическому повреждению и на достаточном удалении от участков сварки и резки, а так же от любых других технологических процессов, являющихся источником высокой температуры, открытого пламени или брызг расплавленного металла.
- Не допускайте касания газового баллона электродом, электрододержателем или иным предметом, находящимся под напряжением.
- Защитный колпак газового баллона всегда должен быть установлен на баллон, за исключением случаев, когда баллон находится в работе.

ВНИМАНИЕ! ДЫМ И ГАЗЫ!

Дым и выделяющиеся при сварке газы могут привести к удушью и отравлению! Помимо этого, под воздействием ультрафиолетового излучения электрической дуги пары растворителя (хлорированного углеводорода) могут превращаться в токсичный фосген!

- Необходимо пользоваться вытяжкой, обеспечивающей достаточный приток свежего воздуха!
- Не допускается попадание паров растворителей в зону излучения сварочной дуги!
- При необходимости следует использовать средства индивидуальной защиты органов дыхания!

ВНИМАНИЕ! ОГНЕОПАСНОСТЬ!

Высокая температура, разлетающиеся искры, раскаленные детали и горячие шлаки, образующиеся при сварке, могут стать причиной возгорания. Блуждающие сварочные токи могут привести к возгоранию!

- Необходимо исключать возникновение очагов возгорания в рабочей зоне!
- Запрещается присутствие легковоспламеняющихся предметов в рабочей зоне.
- Необходимо убедиться, рабочая зона оборудована средствами пожаротушения, в том числе средствами пожаротушения электрооборудования.

- Перед началом сварки необходимо тщательно удалить с деталей остатки горючих веществ.
- Сваренные детали разрешается обрабатывать только после их охлаждения. Детали не должны контактировать с воспламеняющимися материалами!
- Следует подсоединять сварочные кабели надлежащим образом!

ВНИМАНИЕ!

При эксплуатации аппарата следует соблюдать технические регламенты и национальные директивы! При проведении сварочных работ на территории РФ необходимо соблюдать требования стандартов:

- ГОСТ 12.3003-86 «Работы электросварочные. Требования безопасности»,
- ГОСТ 12.1.010-76 «ССБТ. Взрывобезопасность. Общие требования»,
- ГОСТ Р 12.3.047-2012 «Система стандартов безопасности труда (ССБТ). Пожарная безопасность технологических процессов. Общие требования. Методы контроля»,
- ГОСТ 12.3.002-2014 «ССБТ. Процессы производственные. Общие требования безопасности».

Монтаж и эксплуатацию аппарата следует проводить согласно ГОСТ Р МЭК 60974-9-2014 «Оборудование для дуговой сварки. Часть 9. Монтаж и эксплуатация», проверку и испытания — согласно ГОСТ Р МЭК 60974-4-2014 «Оборудование для дуговой сварки. Часть 4. Периодическая проверка и испытание».

ВНИМАНИЕ! РЕМОНТ СЕРТИФИЦИРОВАННЫМ ПЕРСОНАЛОМ!

С• К ремонту оборудования допускается только персонал, сертифицированный Производителем.

- При несанкционированных действиях с аппаратом гарантия теряет силу!
- Гарантия Производителя аннулируется при использовании аппарата не по назначению, при нарушении правил эксплуатации или при повреждении аппарата вследствие использования некачественных компонентов сторонних производителей!
- Следует подсоединять и закреплять дополнительные компоненты к соответствующему гнезду подключения только после выключения аппарата!
- Сварочные кабели необходимо полностью размотать перед началом работ!
- Сварщики должны использовать спецодежду, сварочные щитки или маски и другие защитные приспособления.
- Персонал в рабочей зоне должен носить средства индивидуальной защиты органов слуха!
- Замена и монтаж дополнительного оборудования, в том числе монтаж и демонтаж разъёмов и переходников разрешается выполнять только убедившись в отключении аппарата от электрической сети.

2 НАЗНАЧЕНИЕ АППАРАТА

Сварочный аппарат EVOMIG — промышленный инверторный сварочный аппарат модульной конструкции с цифровым управлением.

Сварочный аппарат EVOMIG обеспечивает высококачественную сварку стали, алюминиевых и медно-никелевые сплавов.

Сварочный аппарат EVOMIG предназначен для электродуговой сварки:

- МП (MAG) сварка сплошной и порошковой проволокой в среде активных газов,
- МПИ (MIG/MAG)— сварка сплошной и порошковой проволокой в среде инертных газов и смесях,
- МПС сварка самозащитной порошковой проволокой без газовой защиты.
- РАД (TIG) ручная аргонодуговая сварка неплавящимся вольфрамовым электродом,
- РД (ММА) ручная дуговая сварка покрытыми электродами с основным, рутиловым и целлюлозным покрытиями.

Сварочный аппарат EVOMIG может эффективно применяться для воздушно-дуговой строжки угольным электродом.

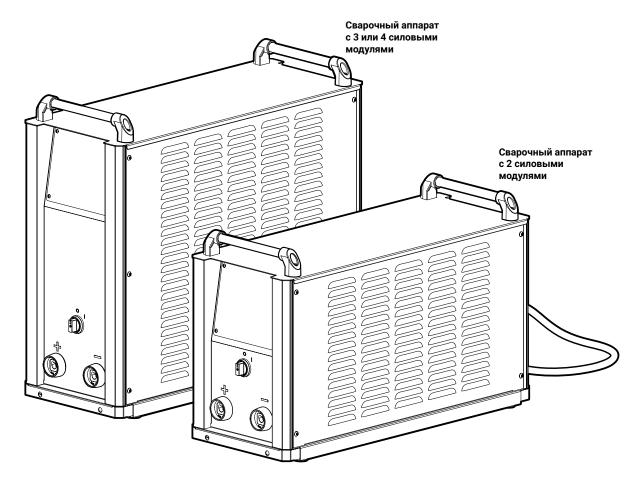


Рис. 1 — Общий вид аппарата

3 УСЛОВИЯ ЭКСПЛУАТАЦИИ

При использовании не по назначению аппарат может стать источником опасности для людей, животных и материальных ценностей. Производитель не несет ответственности за возникший вследствие такого использования ущерб!

ВНИМАНИЕ!

Используйте аппарат только по назначению! Использовать аппарат разрешается только квалифицированному персоналу! Запрещается вносить изменения или производить доработки аппарата без согласования с Производителем!

При работе следует устанавливать аппарат на ровное и горизонтальное основание. Допустимый угол наклона аппарата не более 15°.

Вид климатического исполнения согласно ТУ 3441-001-82175893-2015 У1, У3 по ГОСТ 15150-69 при верхнем значении рабочей температуры воздуха плюс 50 °С и нижнем значении рабочей температуры воздуха минус 40 °С.

ВНИМАНИЕ!

Эксплуатация при температуре воздуха в помещении более плюс 50 °C запрещена.

Относительная влажность окружающего воздуха: до 50% при плюс 40 °C, до 90% при плюс 20 °C.

Степень защиты изделия – IP34 по ГОСТ 14254-2015. На месте установки сварочного аппарата не должно быть пыли и агрессивных сред.

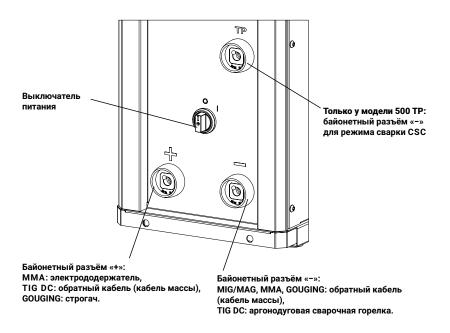
Класс изделия по способу защиты человека от поражения электрическим током — 01 по ГОСТ 12.2.007.0-75.

Аппарат должен быть запитан от сети, качество которой соответствует требованиям TP TC 020/2011.

В помещении должна быть предусмотрена приточно-вытяжная система вентиляции с производительностью не менее 20 м³/мин на один аппарат.

При работе аппарата между корпусом аппарата и стеной (или иной отражающей поверхностью) должен обеспечиваться зазор не менее 350 мм.

Вентиляционные отверстия аппарата запрещается закрывать сторонними объектами.


ОПАСНОСТЬ! НЕ ПОДНИМАТЬ С БАЛЛОНОМ!

Строго запрещено поднимать транспортную тележку сварочного аппарата, если на ней установлен газовый баллон. Перед подъёмом следует снять баллон с тележки.

4 РАСПОЛОЖЕНИЕ РАЗЪЁМОВ НА КОРПУСЕ

Лицевая панель

Тыльная панель

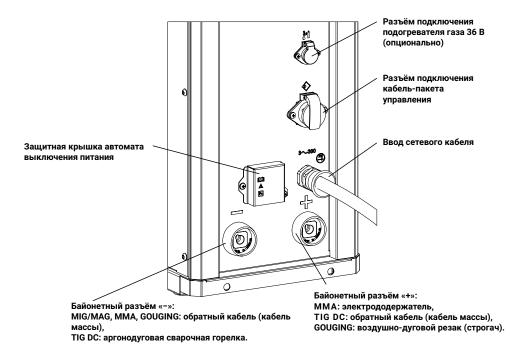


Рис. 2 — Расположение разъёмов на корпусе

5 ПОДГОТОВКА К РАБОТЕ

5.1 БЛОК ЖИДКОСТНОГО ОХЛАЖДЕНИЯ

Если вы приобрели сварочный аппарат в комплекте с блоком жидкостного охлаждения (далее — БЖО), ознакомьтесь с содержанием данного раздела.

БЖО — устройство с адаптивным режимом работы, которое оптимизирует свою производительность в зависимости от температуры охлаждающей жидкости, её уровня и длины рукава сварочной горелки. Общий вид БЖО приведен на *Рис. 3*.

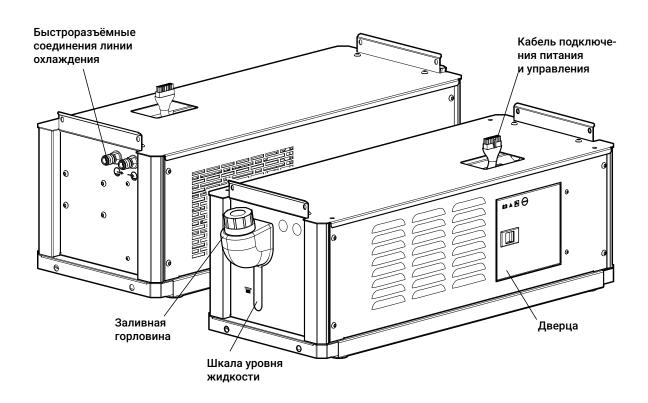


Рис. 3 — Общий вид БЖО

5.1.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ БЖО

Перечень основных технических характеристик БЖО приведен в Табл. 1.

Табл. 1 — Технические характеристики БЖО

Параметр	Значение
Напряжение питающей сети	400 B ±25%
Частота сети, Гц	50/60
Максимальная потребляемая мощность, кВт, не более	0,45
Производительность, л/мин	5
Мощность охлаждения, кВт, не более	1,91
Максимальное давление, бар	3,5
Ёмкость бака, л	10
Габариты, мм, не более	810 × 300 × 287
Масса (без охлаждающей жидкости), кг, не более	23,85
Автомат выключения питания, А	3×6
Класс защиты	IP 34
Класс изоляции	Н
Рекомендуемая охл. жидкость	Cutweld Cool Weld

ОПАСНОСТЬ!

Категорически запрещается использовать в качестве охлаждающей жидкости автомобильный антифриз или воду!

ВНИМАНИЕ! УСЛОВИЯ ЭКСПЛУАТАЦИИ БЖО!

Окружающая среда не должна содержать чрезмерно больших количеств пыли, кислот, испарений, взвесей масла, корродирующих газов или субстанций и т. д., если только они не образуются в процессе сварки, а так же вибраций и источников излучения тепла помимо сварочного поста.

Не используйте БЖО в нештатных условиях эксплуатации: чрезмерное количество частиц в окружающем воздухе (например, шлифовальной пыли), корродирующий дым, пар, густой масляный туман, сильные вибрации или толчки, суровые погодные условия, загрязненная охлаждающая жидкость. При установке аппарата следует обеспечить свободный приток и отвод воздуха.

5.1.2 МОНТАЖ И ПОДГОТОВКА БЖО К РАБОТЕ

Для подготовки к работе БЖО необходимо:

1 Установить БЖО на тележку.

ВНИМАНИЕ!

При подготовке к работе БЖО с полностью слитой охлаждающей жидкостью для обеспечения гарантированной работы насоса БЖО в нормальном режиме необходимо:

- 1 Залить в бак БЖО 2,5-3,0 литра охлаждающей жидкости.
- 3 Приподнять корпус БЖО со стороны заливной горловины бака (рис.3) на 15–30% градусов и выдержать в таком положении 5–10 секунд, обеспечив, вытеснение охлаждающей жидкостью воздуха, находящегося в патрубке, соединяющем бак БЖО с насосом.

(Далее, для удобства выполнения монтажа, рукав кабель-пакета может быть временно отстыкован).

- 2 Зафиксировать согласно «Инструкции по монтажу», прилагаемой к тележке.
- 3 Установить сварочный аппарат на БЖО и зафиксировать болтами. Крепление сварочного аппарата на БЖО и крепление БЖО на транспортной тележке аналогичны.

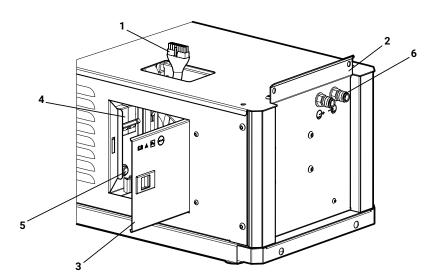


Рис. 4— Элементы БЖО: 1— кабель питания и управления, 2— крепежная пластина, 3— боковая дверца, 4— автомат выключения питания, 5— кнопка прокачки жидкости, 6— быстросъёмные соединения линии охлаждения

4 Подключить кабель питания и управления БЖО к сварочному аппарату (Рис. 5).

ВНИМАНИЕ! ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ!

Питание БЖО подключать только к обесточенному сварочному аппарату!

Для этого необходимо открыть боковую дверцу (3) БЖО и, через отверстие в верхней крышке, отодвинуть в направлении по стрелке защитный лючок (1) разъёма сварочного аппарата и подключить кабель питания и управления к разъёму.

- 5 Следует убедиться, что рычаг автомата выключения питания (4 на *Puc. 4*) находится в верхнем положении положение «ВКЛ».
 - 6 Включить питание сварочного аппарата.
- 7 Подключить рукава кабель-пакета к БЖО, соблюдая цветовую маркировку или ориентируясь на условные обозначения на корпусе.
- 8 Залить через горловину бака БЖО охлаждающую жидкость до уровня максимум по отметке на корпусе.

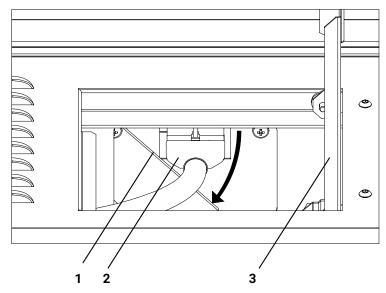


Рис. 5— Подключение БЖО: 1— защитный лючок разъёма, 2— кабель питания и управления БЖО, 3— боковая дверца БЖО.

9 Прокачать охлаждающую жидкость через подключенные кабель-пакет, УПП и горелку.

ВНИМАНИЕ!

После включения питания и прокачки жидкости возможно вращение лопастей вентиляторов охлаждения. Запрещено касаться руками вентиляторов!

Для этого необходимо зажать кнопку (5 на *Puc. 4*) внутри БЖО. В зависимости от длины рукава время прокачки может составить до 1 минуты. Если после прокачки уровень жидкости опустится до минимума, жидкость следует долить. Рекомендуемый уровень жидкости в баке после прокачки между отметками минимум и максимум.

10 Закрыть боковую дверцу (3) БЖО.

ВНИМАНИЕ!

Производитель не несет ответственности за повреждения, полученные в следствие использования не рекомендованной или чрезмерно загрязненной охлаждающей жидкости. Следует использовать охлаждающую жидкость CUTWELD COOL WELD.

Допускается использование охлаждающих жидкостей, рекомендованных производителями сварочных горелок.

Следует проверять чистоту охлаждающей жидкости не реже раза в квартал, производить её замену не реже раза в год или по мере загрязнения. Следует визуально проверять уровень охлаждающей жидкости и её чистоту перед каждой рабочей сменой!

5.1.3 ЗАМЕНА ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ

Для замены охлаждающей жидкости необходимо:

- 1 Отключить от БЖО рукава кабель-пакета.

Технический рукав для слива жидкости представляет из себя отрезок рукава от полуметра с одной стороны обжатой ответной частью быстроразъёмного соединения, установленных на БЖО (*Puc. 3*).

- 3 Открыть боковую дверцу БЖО (3 на Рис. 4).
- 4 Зажать кнопку прокачки жидкости (5), после чего жидкость через помпу и технический рукав начнёт поступать в ёмкость.

Для полной замены жидкости рекомендуется БЖО, либо тележку с БЖО, установить на площадке под небольшим углом таким образом, что бы передний край БЖО был поднят на 30...50 мм относительно заднего края БЖО.

ВНИМАНИЕ!

После включения питания и прокачки жидкости возможно вращение лопастей вентиляторов охлаждения. Запрещено касаться руками вентиляторов!

Необходимо удерживать кнопку нажатой до полного слива жидкости.

- 5 Отключить технический рукав и подключить рукава охлаждающей жидкости к БЖО, соблюдая цветовую маркировку или ориентируясь на условные обозначения на корпусе.
 - 6 Выполнить работы по подпунктам 7-9 раздела 5.1.2.

УСТРОЙСТВО ПОДАЧИ ПРОВОЛОКИ 5.2

Устройство подачи проволоки (УПП) осуществляет подачу проволоки из кассеты в зону сварки. УПП включает в себя пульт управления и механизм подачи. УПП имеет классическую компоновку и используется в комплекте со сварочным аппаратом.

УПП выпускается производителем в трёх модификациях: УПП-300П, УПП-300М, УПП-200К. Общий вид УПП представлен на Рис. 6.

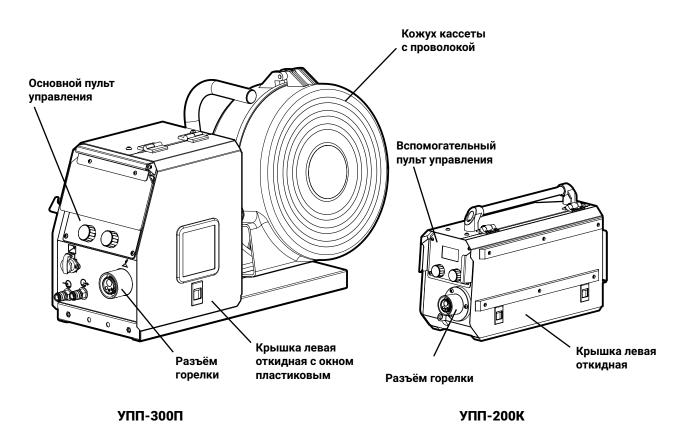


Рис. 6 — Общий вид УПП

ПРИМЕЧАНИЕ!

i Примечание: модель УПП-300М, является модификацией модели УПП-300П. Она представляет собой модель УПП-300П, помещенную в металлический корпус, защищающий от пыли и прочих загрязнений. Правила монтажа и эксплуатации модели УПП-300М и модели УПП-300П полостью аналогичны.

5.2.1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ УПП

Перечень основных технических характеристик УПП приведены в Табл. 2.

Табл. 2 — Технические характеристики устройств подачи проволоки

Параметр	Модель устройства подачи проволоки				
	открытого типа УПП-300П	закрытого типа УПП-300М	компактная УПП-200К		
Скорость подачи проволоки, м/мин	1,0-25,0	1,0-25,0	1,0-18,0		
Диаметр сварочной проволоки, мм	0,8-2,0	0,8-2,0	0,8-1,2		
Число роликов / ведущих роликов	4/4	4/4	4 /2		
Напряжение питания, В	36	36	36		
Степень защиты	IP 23	IP 23	IP 23		
ПВ при работе с токами до 500 А	100%	100%	100%		
Класс изоляции	Н	Н	Н		
Разъём подключения горелки	Euro	Euro	Euro		
Габариты, мм	700×300×430	639 × 264 × 439	500×194×317**		
Масса, кг	19,0	16,4	10,5		

^{*} Модели УПП-300П, УПП-300М, УПП-200К совместимы со сварочным аппаратами EVOMIG 350, 400, 450, 500, 500TP, 550, 650 при работе на токах до 550 A.

^{**} Габарит без учета кронштейна для закрепления кабель-пакета.

5.2.2 МОНТАЖ И ПОДГОТОВКА УПП К РАБОТЕ

Для подготовки к работе УПП необходимо:

- 1 Продеть кабель-пакет через хомут (1 на Рис. 7);
- 2 Подключить байонетные разъёмы кабель-пакета к УПП, соблюдая цветовую маркировку или ориентируясь на условные обозначения на корпусе.
- 3 Подключить байонетный разъём горелки к соответствующему разъёму на передней панели.

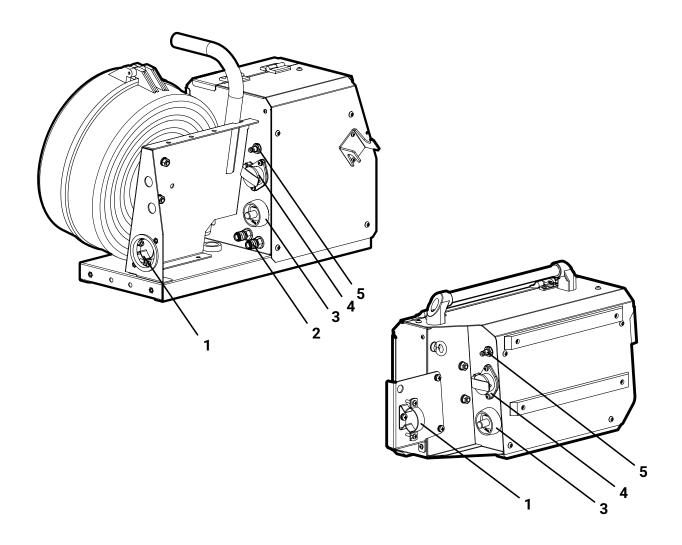


Рис. 7— Элементы УПП: 1— хомут крепления кабеля, 2— быстросъёмные соединения линии охлаждения, 3— силовой байонетный разъём, 4— разъём кабеля управления, 5— клапан газовый

ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ!

УПП подключать только к обесточенному сварочному аппарату!

5.2.3 ЗАПРАВКА ПРОВОЛОКИ

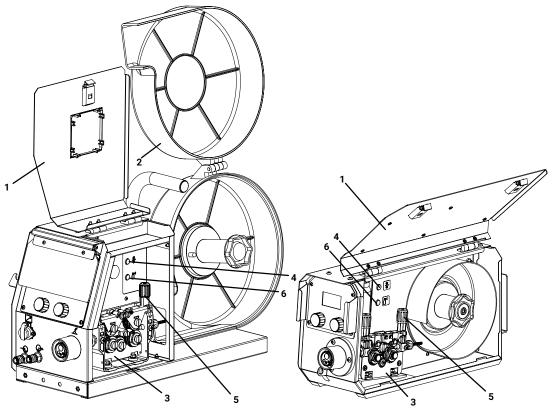


Рис. 8— Заправка проволоки: 1— крышка левая откидная, 2— крышка кожуха, 3— механизм подачи, 4— кнопка прогона, 5— ручки фиксирующие ролики, 6— кнопка продувки газа

ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ!

Производить работы только на обесточенном сварочном аппарате!

Для заправки проволоки необходимо:

- 1 Откинуть боковую дверцу (1 на Рис. 8) устройства и крышку кожуха (2);
- 2 Установить кассету с проволокой;
- 3 Заправить конец проволоки в сопло механизма подачи (3);
- 4 Протянуть сварочную проволоку от кассеты к соплу горелки одним из способов:
- а) Нажать и удерживать кнопку прогона (4) сварочной проволоки на УПП до тех пор, пока проволока не выступит из гусака горелки на 10...15 мм от торца газового сопла;
- б) Нажать и удерживать кнопку горелки в течение 6 секунд, пока на пульте управления не появится значок протяжки проволоки, отпустить кнопку горелки. Снова нажать кнопку и удерживать её нажатой до тех пор, пока проволока не выступит из гусака горелки на 10...15 мм от торца газового сопла, отпустить кнопку.

ВНИМАНИЕ! ВРАЩАЮЩИЕСЯ ДЕТАЛИ!

Подача сварочной проволоки осуществляется со скоростью 10 м/мин. Берегите руки, одежду и волосы от попадания между роликами механизма подачи.

ПРИМЕЧАНИЕ!

В случае пробуксовки сварочной проволоки в механизме подачи, необходимо ручки (5), удерживающие ролики в поджатом состоянии, привести в нижнее положение. Протянуть проволоку по каналу между роликами, придавить ролики сверху и зафиксировать их положение ручками механизма, приведя их в вертикальное положение.

ВНИМАНИЕ!

Следует регулярно проверять затяжку роликов подающего механизма и очищать его от металлической пыли, стружки и прочих остатков проволоки. Следует регулярно обслуживать горелку в соответствии с режимами её эксплуатации. Вовремя устранять выявленные неисправности и причины вызывающие их причина пунк.11.2 настоящего Руководства.

Эти меры помогут избежать возникновения коротких замыканий и уберечь оборудование от выхода из строя. Несоблюдение этих рекомендаций со стороны заказчика влечёт отказ от гарантийных обязательств со стороны производителя!

5.3 МОНТАЖ СВАРОЧНОГО АППАРАТА

Для монтажа и подготовки к работе сварочного аппарата необходимо:

1 Установить аппарат на шасси (*Puc.* 9) или на тележку (*Puc.* 10). Крепежные винты входят в состав тележки.

ПРИМЕЧАНИЕ!

При включении в состав оборудования БЖО установка и монтаж сварочного аппарата производится непосредственно на БЖО в соответствии с пунктом *5.1.2.*.

2 Установить на сварочный аппарат балку, со штырём для фиксации УПП, если она применяется (*Puc. 11*).

3 В случае эксплуатации сварочного аппарата с тележкой, оборудованной площадкой под газовый баллон, установить баллон с защитным газом на тележку и зафиксировать цепью по отверстиям в тележке.

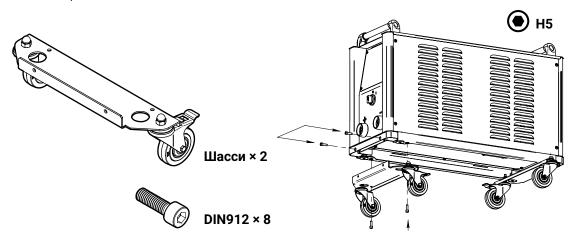
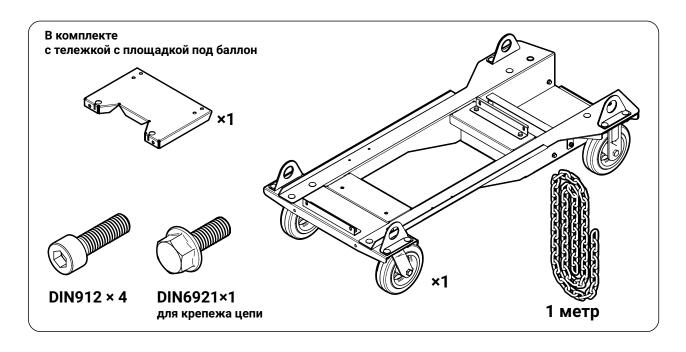



Рис. 9 — Монтаж источника на шасси

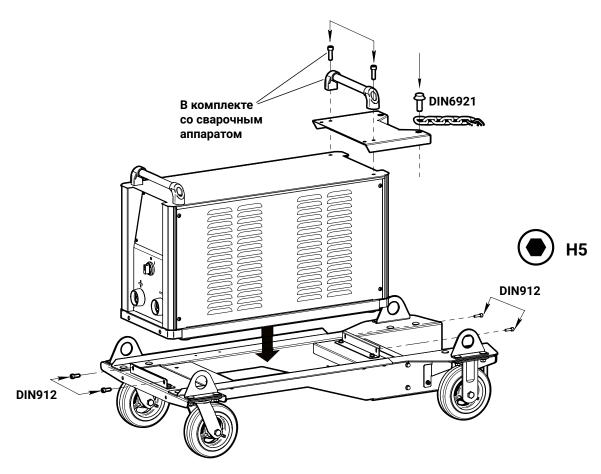
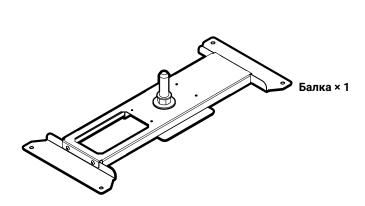



Рис. 10 — Монтаж сварочного аппарата на тележку (без БЖО)

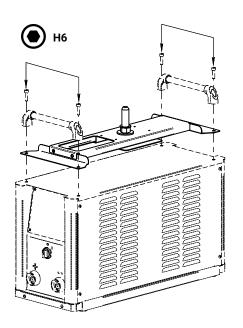


Рис. 11 — Монтаж балки УПП

- 4 Снять защитный колпак с газового баллона.
- 5 Установить на баллон газовый редуктор-регулятор расхода газа.

ВНИМАНИЕ!

Необходимо использовать газы и их смеси с концентрацией минеральных массел и механических включений, отвечающих требованиям ГОСТа для данного вида газа или смеси, например СО₂ по ГОСТ 8050-85. Производитель оборудования не несёт ответственности за качество используемого газа для проведения сварочных работ!

6 Один конец газового рукава подключить к устройству подачи проволоки, второй – к газовому редуктору. Для защиты газовой системы устройства подачи проволоки от засора можно подключить газовый рукав через дополнительный внешний газовый фильтр. Открыть вентиль на баллоне. В случае централизованной подачи защитного газа необходимо подключить газовый рукав к газораздаточному посту.

В случае применения встроенного в аппарат питания подогревателя газа, следует выполнить монтаж кабеля подогревателя к разъёму, идущему в комплекте с аппаратом при заказе соответствующей опции.

7 Проложить кабели сварочного тока.

ВНИМАНИЕ!

Неправильно проложенные кабели сварочного тока могут привести к нарушению (мерцанию) сварочной дуги!

Следует прокладывать обратный кабель (кабель массы) и кабель-пакет сварочного аппарата параллельно, на максимальную длину и как можно ближе друг к другу.

Следует соблюдать расстояние не менее 20 см к кабелям других источников тока, чтобы избежать их нежелательных воздействий друг на друга (*Puc. 12*).

Длина кабелей ни в коем случае не должна быть больше предписанной.

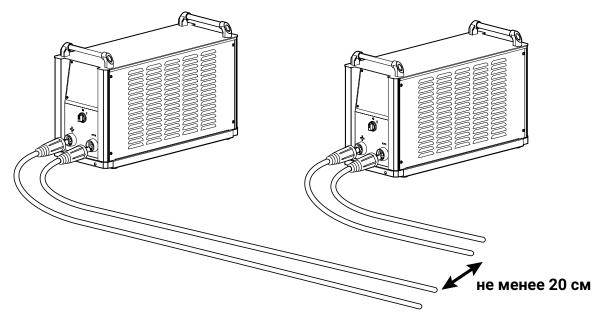


Рис. 12 — Раскладка кабелей

Для каждого сварочного аппарата следует использовать обратный кабель (кабель массы) из его комплекта поставки.

Силовые кабели, кабель-пакет, кабели управления следует полностью размотать. Если кабель слишком длинный, его следует укладывать волнообразно, избегая образования петель (*Puc. 13*).

опасность поражения блуждающим электрическим током!

Блуждающие сварочные токи могут привести к перегреву компонентов и возникновению пожара, повреждению аппаратов и электроприборов.

- Регулярно проверяйте надежность и правильность подключения всех силовых кабелей.
- При установке, фиксации или подвешивании токопроводящих компонентов сварочного аппарата (корпус, УПП, транспортная тележка) должна быть обеспечена их электрическая изоляция!
- Не кладите другие электроприборы, например перфораторы, угловые шлифмашины и т. п., на источник тока, не изолировав их!
- Когда сварочная горелка и электрододержатель не используются, кладите их на изолирующую подкладку!

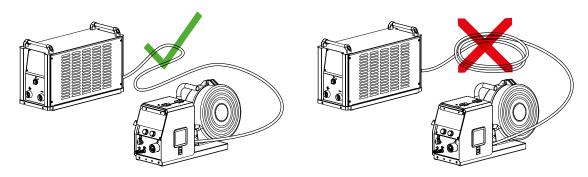


Рис. 13 — Раскладка кабелей

8 Подсоединить вилку ~380 В с заземлением к кабелю питания соблюдая маркировку: жёлто-зелёный провод – защитное заземление, коричневый провод — фаза L1, черный провод — фаза L2, синий (серый) провод — фаза L3.

- 9 Вставить вилку кабеля питания в штепсельную розетку ~380 В.
- 10 Подключить обратный кабель (кабель массы) изделия к гнезду «-» и закрепить зажим кабеля на свариваемой детали (заготовке).
- 11 Установить проволокоподающие ролики на механизме подачи согласно диаметру и типу выбранной сварочной проволоки.
- 12 Подключить сварочную горелку к устройству подачи проволоки. При этом направляющий канал для проволоки и контактные наконечники подбираются под тип сварочной проволоки и её диаметр.

5.4 НАСТРОЙКА СВАРОЧНОГО АППАРАТА

После монтажа сварочного аппарата, необходимо выполнить следующие операции по настройке:

- 1 Включить сварочный аппарат.
- 2 Выбрать необходимое сочетание материала, диаметра проволоки и вида защитного газа (см. пп. 8.4).
- 3 Установите необходимое давление (расход) газа на редукторе, нажав кнопку продувки газа на устройстве подачи проволоки. Упрощённая формула: диаметр проволоки ×10 = расход газа, л/мин.
- 4 Настроить сварочный ток или скорость подачи сварочной проволоки или толщину свариваемого металла.
- 5 Выбрать двухтактный или четырехтактный режим управления подачей проволоки (п. 8.7).

При работе в двухтактном режиме для запуска процесса сварки нажмите и удерживайте кнопку сварочной горелки. Процесс запустится только при касании детали электродом.

- 6 Для завершения процесса сварки отпустить кнопку горелки.
- 7 При необходимости отрегулировать длину электрической дуги и динамику при помощи корректоров.

6 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Технические характеристики аппаратов EVOMIG приведены в *Табл. 3*.

Табл. 3 — Технические характеристики аппаратов EVOMIG

Параметр	Модель EVOMIG XXX Basic/ProFe/ProAl, где XXX:						
	350	400	450	500	500 TP	550	650
Диапазон регулирования свар. тока в режиме, А:							
MIG/MAG (МП/МПИ/МПС)	25-350	25-380	25-450	25-500	25-500	25-550	25-650
CSC (МПИ/МП)	_	_	_	_	50-180	_	_
ММА (РД)	20-350	20-350	20-450	20-500	20-500	20-500	20-630
Строжки	150-350	150-380	150-450	150-500	150-500	150-550	150-650
TIG DC Lift (РАД)	3-350	3-380	3-450	3-500	3-500	3-550	3-650
Сила тока, А при ПВ 100% (40%) и t=40 °C в режиме:							
MIG/MAG (МП/МПИ/МПС)	350	350 (380)	450	500	500	550	650
CSC (МПИ/МП)	_	_	_	_	180	_	_
ММА (РД)	350	350	450	500	500	500	650
TIG DC Lift (РАД)	350	350 (380)	450	500	500	550	650
Напряжение сети, В				400 ±25%			
Частота тока сети, Гц				50/60			
Авт. выключатель, А	3×40	3×40	3×63	3×63	3×63	3×63	3×63, 2 шт.
Потребляемый ток, А	26	32	38	44	44	51	66
Макс. потреб. мощность в режиме, кВт:							
MIG/MAG (МП/МПИ/МПС)	12,2	15,1	18,2	21,7	21,7	25,4	33,6
CSC (МПИ/МП)	_	_	_	_	14,0	_	_
ММА (РД)	13,2	16,0	19,0	22,2	22,2	25,7	31,8
Строжки	14,2	17,0	20,0	23,2	23,2	27,0	33,0
TIG DC Lift (РАД)	9,3	11,5	14,0	16,7	16,7	19,5	24,6

Продолжение таблицы на следующей странице

Табл. 3 — Продолжение таблицы

Параметр	N	Модель EVOMIG XXX Basic/ProFe/ProAl, где XXX:					
	350	400	450	500	500 TP	550	650
кпд		96%					
Напряжение холостого хода, В:							
без функции VRD				93			
с функцией VRD**	12						
Степень защиты	IP 34						
Класс изоляции	Н						
Масса, кг	42	<u>2,</u> 1	5	5,5	61,5	55,2	110,0
Габариты, мм	740×30	0×460*		740×3	00×660	,	900 × 400 × 910

^{*} для аппарата EVOMIG 350 в компактом исполнении габариты $740 \times 300 \times 660$ мм с учетом встроенного УПП;

^{**} Функция VRD устанавливается опционально по желанию Заказчика.

7 КОМПЛЕКТАЦИЯ

Комплектация аппарата может отличаться в зависимости от пожеланий заказчика. Базовая комплектация приведена в *Табл. 4*.

Табл. 4 — Базовая комплектация аппарата

Наименование	Кол-во, шт.
Сварочный аппарат	1
Устройство подачи проволоки	1
Шасси источника *при включении в комплектацию транспортной тележки шасси источника не поставляется	2*
Сетевой кабель питания, 5 м	1
Газовый фильтр	1
Руководство по эксплуатации EVOMIG PЭ	1
Паспорт EVOMIG ПС, включающий Гарантийный талон	1
Упаковка	1

Опции:

Модель устройства подачи проволоки на выбор: УПП-300П, УПП-300М, УПП-200К;

Ролики для подающего механизма диаметром: 0,8; 1,0; 1,2; 1,6; 2,0 мм; под сталь, алюминий, порошковую проволоку;

Транспортная тележка: компактная, компактная под баллон;

Комплект для подключения подогревателя газа: штекер для подключения подогревателя газа, внутренний источник питания 36 В, разъём для подключения;

Блок жидкостного охлаждения;

Выносной блок контроля тока и напряжения;

Кабель-пакет, обратный кабель (кабель массы), электрододержатель;

Пульты дистанционного управления;

Система ограничения доступа;

Система сетевого контроля Weld Web;

Функция VRD.

ПРИМЕЧАНИЕ!

Полный перечень опций приведен в каталоге evospark.ru/price.pdf

ПРИМЕЧАНИЕ!

Функциональные возможности и встроенное программное обеспечение могут быть изменены в зависимости от пожеланий Заказчика.

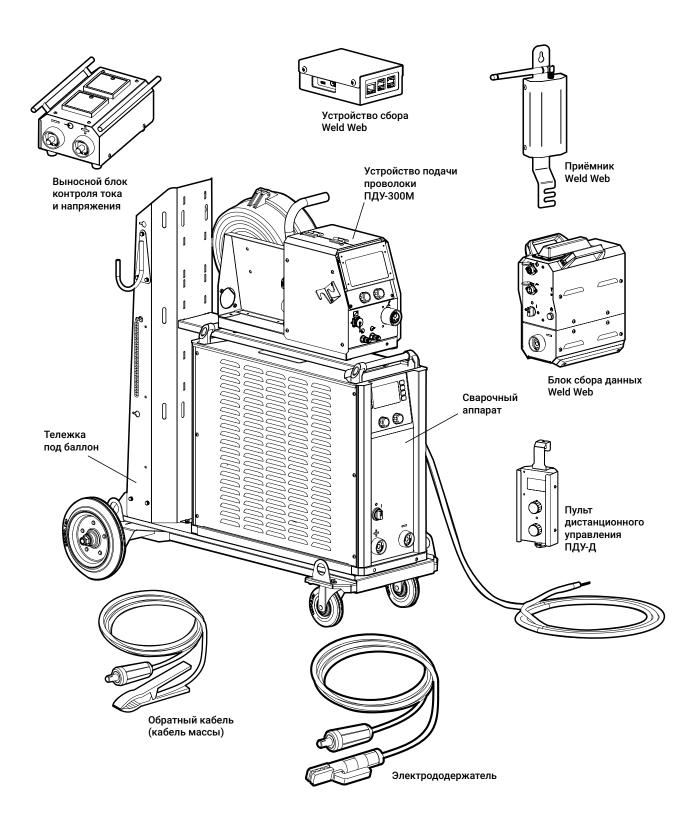


Рис. 14— Общий вид некоторых составных частей и аксессуаров для сварочного аппарата для механизированной сварки

8 ИНСТРУКЦИЯ К ПУЛЬТУ УПРАВЛЕНИЯ

8.1 ОБЩИЙ ВИД

Для управления сварочным аппаратом применяется пульт управления с ЖК-экраном, кнопками управления и двумя ручками управления — основной пульт управления ОПУ-01 (*Puc. 15*).

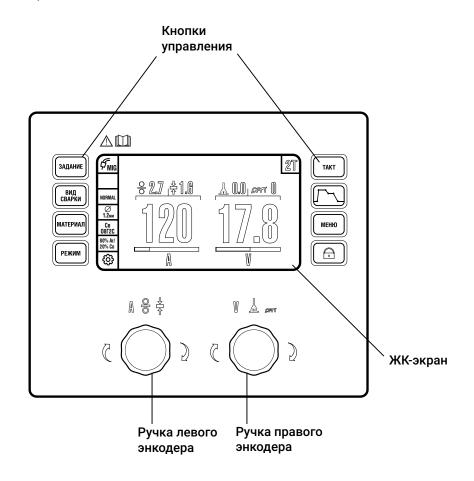


Рис. 15 — Общий вид пульта управления MIG

Организация информационного пространства всех моделей пультов одинакова. В управлении пультом абсолютное большинство действий можно выполнить одной рукой.

В зависимости от требований Заказчика пульт управления ОПУ-01 может быть установлен на сварочном аппарате, на устройстве подачи проволоки УПП-300П или УПП-300М. Дополнительно устройство подачи проволоки может быть укомплектовано вспомогательным пультом управления ВПУ-01 для УПП-300П/300М и ВПУ-02 для УПП-200К (стр. 63).

8.1.1 ОРГАНЫ УПРАВЛЕНИЯ

8.1.1.1 Кнопки управления

Справа и слева от дисплея расположены кнопки управления. Перечень кнопок управления и их назначение приведены в *Табл. 5*.

Табл. 5 — Кнопки управления

Символ	Кнопка	Описание
ЗАДАНИЕ	ЗАДАНИЕ	сохраняет текущие настройки или загружает сохранённые параметры сварки
ВИД	ВИД СВАРКИ	задает вид сварки
МАТЕРИАЛ	МАТЕРИАЛ	задает сочетание материала, диаметра сварочной проволоки и защитного газа
РЕЖИМ	РЕЖИМ	задает необходимый режим сварки
TAKT	TAKT	задает режим управления циклом сварки
	ЦИКЛОГРАММА	редактирует циклограмму сварки
МЕНЮ	МЕНЮ	редактирует дополнительные настройки
	БЛОКИРОВКА	блокирует кнопки и ручки управления, служит для защиты от случайного нажатия

Более подробное описание перечисленных настроек приведено в пп. 8.3-8.9.

8.1.1.2 Ручки управления

Под дисплеем расположены две ручки управления (Табл. 6).

Табл. 6 — Назначение ручек управления

Ручка	Действие	Назначение
Правая	6	регулирование сварочного тока, скорости подачи проволоки и толщины свариваемой детали на Главном экране, в прочих экранах — переход по пунктам меню
		переход по пунктам меню

Продолжение таблицы на следующей странице

Ручка	Действие	Назначение
Левая	•	регулирование корректора длины дуги и динамики на Главном экране
		отмена и выход из настроек

8.2 ГЛАВНЫЙ ЭКРАН

В этом разделе описывается Главный экран «Сварка», который отображается после загрузки аппарата — после включения питания в течение 3-х секунд проходит тест систем и появляется Главный экран.

8.2.1.1 Блоки главного экрана

Главный экран состоит из блоков (Рис. 16).

Рис. 16 — Блоки Главного экрана панели управления

В левой части экрана отображен **Блок настроек сварки**, которые были выбраны ранее: вид сварки, номер загруженной ячейки памяти, режим сварки, диаметр и материал проволоки, защитный газ. Из Главного экрана их редактирование недоступно, но они имеют принципиальное значение для процесса сварки – чтобы сварщик был уверен в правильности выбора параметров.

Вверху справа расположен **Блок тактов** работы сварочной горелки, где отображается режим управления циклом сварки — способ запуска и окончания сварочного процесса с кнопки горелки (п. 8.7).

В центральной части Главного экрана расположен **Блок основных параметров** сварки, разделённый на две части: слева — сварочный ток, скорость подачи проволоки, толщина свариваемого материала — регулируются левой ручкой управления; справа — напряжение на дуге (корректор длины дуги) и корректор динамики — регулируются правой ручкой управления.

Во время сварки на Главном экране отображается сила тока сварочной дуги и выходное напряжение сварочного аппарата. После прекращения сварки отображаются средние значения тока и напряжения, чтобы сварщик мог видеть, при каких значениях он работал (функция HOLD). Мгновенные измеренные значения отображаются красным цветом, параметры уставки — белым.

8.2.1.2 Регулировка основных параметров

Для регулировки основных параметров используются левая и правая ручка управления. Для перехода к регулировке нужного параметра нажмите на соответствующую ручку до появления необходимого параметра на экране.

Например, необходимо настроить режим сварки не по току, а по скорости подачи проволоки (по умолчанию настройка производится по току).

Для этого нажмите на левую ручку управления. Скорость подачи проволоки переместится вниз и станет доступна для редактирования (*Puc. 17*). Для изменения значения вращайте левую ручку управления.

Рис. 17 — Регулировка основных параметров.

Слева: круговая перестановка параметров осуществляется нажатием на ручку управления, активный параметр расположен внизу. Справа: изменение величины активного параметра осуществляется вращением ручки управления.

По такому принципу регулируются все параметры, которые можно настроить непосредственно во время сварки.

8.2.1.3 Корректоры сварочной дуги

Справа в блоке основных параметров расположены корректоры, влияющие на сварочную дугу. Перечень корректоров приведен в *Табл. 7*.

Табл. 7 — Корректоры сварочной дуги

Символ	Кнопка	Описание
	ДЛИНА ДУГИ	корректор напряжения сварочной дуги. Позволяет отрегулировать напряжение в меньшую или большую сторону от установленного. Влияет на длину дуги. С повышением напряжения увеличивается ширина шва и улучшается формирование валика, однако одновременно возрастают излучение дуги и угар легирующих элементов, а также повышается чувствительность дуги к магнитному дутью. Для увеличения длины дуги увеличьте этот параметр, для уменьшения длины дуги уменьшите.
DART	ДИНАМИКА	корректор быстродействия источника. Эта настройка позволяет подобрать оптимальную скорость нарастания сварочного тока, обеспечивает необходимое сжимающее усилие на дуге для уменьшения разбрызгивания электродного металла, а также влияет на глубину проплавления, подвижность сварочной ванны и величину валика.

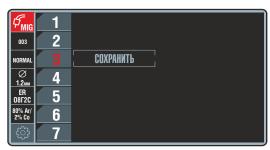
8.3 КНОПКА ЗАДАНИЕ

Раздел меню ЗАДАНИЕ позволяет выполнять сохранение, загрузку и очистку ячеек со сварочными заданиями, что позволяет упростить и свести к минимуму настройки аппарата, а также повысить производительность за счёт сохранённых и отработанных ранее режимов сварки.

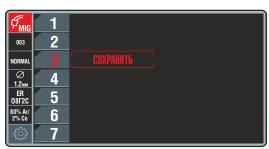
В памяти хранится 100 ячеек, каждая из которых задана числом от 1 до 100.

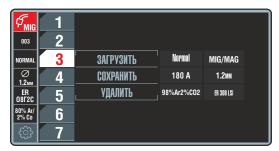
При сохранении сварочных заданий в ячейку, фон ячейки в меню окрашивается в белый цвет. При загрузке ячейки из памяти ее номер отображается в блоке параметров сварки.

8.3.1 АЛГОРИТМЫ РАБОТЫ С ЯЧЕЙКАМИ


Алгоритмы сохранения, загрузки и удаления сварочных заданий описан на следующих страницах.

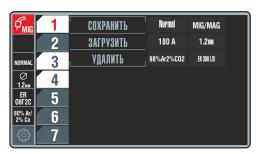
8.3.1.1 Сохранение


Нажмите кнопку ЗАДАНИЕ — на экране появится меню выбора задания. Повторное нажатие на кнопку ЗАДАНИЕ закрывает экран без сохранения (т. е. кнопка ЗАДАНИЕ работает как вход и выход). Выбор номера ячейки происходит вращением левой ручки управления. Для подтверждения выбора нажмите на неё. Для отмены или выхода — нажмите на правую ручку. Алгоритм сохранения сварочного задания приведён на *Рис.* 18.


Нажать на кнопку ЗАДАНИЕ для вызова списка доступных ячеек.

Выберать номер ячейки поворотом левой ручки управления.

Подтвердить выбор ячейки нажатием на левую ручку управления. Затем подтвердить пункт СОХРАНИТЬ нажатием на левую ручку управления.



Цвет ячейки изменится с серого цвета на белый. В столбце слева высветится номер сохранённой ячейки, а в меню — сохранённые в ячейку параметры: режим, ток, вид проволоки, защитный газ.

Рис. 18 — Алгоритм сохранения сварочного задания

8.3.1.2 Загрузка

Алгоритм загрузки сварочного задания приведён на Рис. 19.

Нажать на кнопку ЗАДАНИЕ для вызова меню ЗАДАНИЕ.

Выбрать номер ячейки поворотом левой ручки управления.

Подтвердить выбор ячейки нажатием на левую ручку управления.

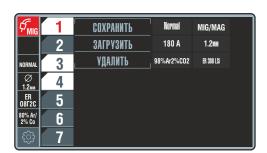
Выбрать пункт ЗАГРУЗИТЬ поворотом левой ручки управления. Подтвердить загрузку нажатием на левую ручку управления. В столбце слева

высветится номер загруженной ячейки.

Рис. 19 — Алгоритм загрузки сварочного задания

ПРИМЕЧАНИЕ!

i Загрузка сварочных заданий возможна без вызова меню ЗАДАНИЕ: нажатием кнопки сварочной горелки (п. 8.8.4) или по длительному удержанию нажатой ручки левого энкодера.


При этом в блоке настроек в соответствующем окошке отображается номер текущей ячейки белым цветом на красном фоне. В этот момент левым энкодером можно прокрутить сохраненные ячейки и нажатием подтвердить выбор.

8.3.1.3 Удаление

Алгоритм удаления сварочного задания на примере ячейки №3 приведен на Рис.

20.

Нажать на кнопку ЗАДАНИЕ для вызова меню ЗАДАНИЕ.

Выбрать номер ячейки поворотом левой ручки управления.

Подтвердить выбор ячейки нажатием на левую ручку управления.

Выбрать пункт УДАЛИТЬ поворотом левой ручки управления.

Подтвердить удаление нажатием на левую ручку управления.

Рис. 20 — Алгоритм удаления сварочного задания

8.3.2 КНОПКА ВИД СВАРКИ

Кнопка ВИД СВАРКИ предназначена для выбора вида сварки. Выбор вида сварки осуществляется левой ручкой управления. Для отмены и выхода из экрана ВИД СВАРКИ необходимо нажать кнопку ВИД СВАРКИ или правую ручку управления.

Табл. 8 — Перечень видов сварки

Вид сварки	Описание
MIG/MAG	стандартная механизированная сварка (МП/МПИ/МПС) с синергетикой
MIG/MAG MANUAL	стандартная механизированная сварка (МП/МПИ/МПС) без синергетики
ММА	ручная дуговая сварка штучными покрытыми электродами (РД)
GOUGING	воздушно-дуговая строжка угольным электродом
TIG DC	аргонодуговая сварка (РАД) на постоянном токе с зажиганием дуги при касании о деталь

8.3.2.1 Описание MIG/MAG

Механизированная (МП) сварка в среде защитного газа MIG/MAG представляет собой метод сварки электрической дугой, при котором проволочный электрод непрерывно подается посредством устройства подачи проволоки и плавится в среде защитного газа. Газ защищает зону сварки от воздействия окружающей атмосферы. Этот метод характеризуется универсальностью в отношении материала, степени механизации и позиции сварки.

Нелегированные и легированные стали принято сваривать в среде активного защитного газа, например, углекислого. Эта разновидность метода называется «сваркой в среде активного защитного газа» или сокращенно MAG (Metal Active Gas Welding). Высоколегированные стали и такие материалы как алюминий, магний, сплавы на основе никеля, титан, свариваются в среде инертного защитного газа, например, аргона. Эта разновидность метода называется «сваркой в среде инертного защитного газа» или сокращенно MIG (Metal Inert Gas Welding).

В сварочном аппарате реализована синергетическая связь между основными параметрами механизированной сварки (ток, напряжение, скорость подачи проволоки).

В режиме MIG/MAG MANUAL синергетика отключается и сварщик может самостоятельно устанавливать напряжение и скорость подачи проволоки по своему усмотрению.

8.3.2.2 Описание ММА

ММА — ручная дуговая сварка (РД), используется для сварки штучными электродами углеродистых сталей обычного качества, качественных сталей с различным содержанием марганца, низколегированных и легированных, жаропрочных и жаростойких сталей, чугуна и цветных металлов. Ручная дуговая сварка возможна на постоянном или импульсном токе прямой или обратной полярности.

8.3.2.3 Описание GOUGING

Строжка используется в металлообрабатывающей промышленности, на сталеплавильных и прокатных заводах для строжки канавок, подготовки и обработки сварочных швов, поверхностной резки раковин и трещин, скашивания кромок, резки, обработки поверхности и прожигания отверстий для всех металлов.

Строжка выполняется на постоянном токе. Вылет угольного электрода из строгача максимум 150 мм. Подключение электрода:

- «+» обратная полярность для стали и стальных сплавов;
- «-» прямая полярность для латуни, бронзы, алюминиевой бронзы, красного литья, меди, алюминия, серого чугуна.

Для строжки применяются угольные электроды с медным покрытием. Диаметры электродов и рабочие токи приведены в *Табл.* 9.

Табл. 9 — Диаметры омеднённых электродов для строжки

Диаметр электрода, мм	Рабочий ток, А
6	220-250
8	350-400
10	500-600

Перед зажиганием дуги необходимо полностью открыть воздушный вентиль. Параметры: сжатый воздух под давлением от 7 до 10 бар при подаче от 600 до 1000 л/мин., без включений воды и масла.

Зажигание дуги производится посредством кратковременного соприкосновения электрода с изделием, затем электрод следует немного отвести назад. Рекомендуется работать с очень короткой дугой. Ведите электрод равномерно в направлении потока сжатого воздуха.

8.3.2.4 Описание TIG DC

Аргонодуговая сварка TIG DC Lift (РАД) с зажиганием дуги при отрыве электрода от детали — процесс высококачественной сварки на постоянном или импульсном токе, который позволяет получить отличные сварочные швы на тонких материалах. Кроме того, достаточно часто применяется для сварки труб и высоколегированных сталей.

Для этого вида сварки используется вентильная горелка. Подключение горелки соответствует «прямой» полярности («–» на электрод)! Для зажигания дуги необходимо коснуться электродом детали, нажать кнопку горелки и плавно отвести горелку вверх на 3–5 мм.

В режиме TIG DC доступен стандартный процесс сварки NORMAL, а для программных модификаций ProFe и ProAl— стандартный процесс сварки NORMAL и импульсный PULSE. Для выбора необходимо нажать кнопку PEЖИМ.

Для режима NORMAL на циклограмме настраиваются параметры:

- время перехода к основному току от 0 до 20 с;
- основной ток от 3 А до максимального тока модели аппарата.

Для режима PULSE на циклограмме настраиваются параметры:

- время перехода к основному току от 0 до 20 с;
- основной ток от 3 А до максимального тока модели аппарата;
- длительность основного тока от 0,01 до 20 с;
- второй ток сварки от 25% до 200% основного тока;
- длительность второго тока от 0,01 до 20 с.

8.4 КНОПКА МАТЕРИАЛ

Кнопка МАТЕРИАЛ позволяет выбрать необходимое сочетание сварочной проволоки, её диаметра и защитного газа (*Puc. 21*).

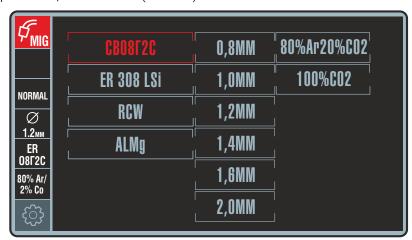


Рис. 21 — Меню выбора электродного материала и защитного газа

Выбор осуществляется левой ручкой управления. Для отмены и выхода из данного меню необходимо нажать кнопку МАТЕРИАЛ или правую ручку управления.

Максимальный перечень свариваемых материалов для проволоки диаметром 1,2 мм приведён в *Табл. 10*. В зависимости от выбранного диаметра и программной комплектации данный список может быть редуцирован.

В зависимости от выбранного материала сварочной проволоки, меню предлагает выбрать газ или газовые смеси, которые применяются с выбранной проволокой: 100%CO2; 100%Ar; 80%Ar/20%CO2; 98%Ar/2%CO2.

Табл. 10 — Перечень электродных материалов

Материал	Описание	
СВ08Г2С	сталь конструкционная	
СВ08ГСНТ	коррозионно стойкая для сварки конструкций из хладостойких	
	сталей повышенной прочности для судостроительной и химической	
	промышленности	
ER308LSi	нержавеющая сталь с содержанием хрома 20±3% и никеля 10±3%, может	
	маркироваться Св-04Х19Н9	
RCW	рутиловая порошковая проволока,	
	может маркироваться ПП-60Р или PowerArc	
CuSi3	проволока медная для сварки медных и медно-оловянных сплавов,	
	наплавки на стальные детали, нелегированные и низколегированные стали,	
	Применяется также для MIG-пайки	
MCW	металлопорошковая проволока, может маркироваться как	
	ПП-60М или PowerBridge	
308LP	порошковая рутиловая проволока для сварки нержавеющих сталей	
	типа 18%Cr— 10%Ni во всех пространственных положениях, а также	
	стабилизированных сталей Nb и Ti	
AlMg	алюминиевый сплав	
AlSi	алюминиевая проволока для сварки Al–Si и Al–Si–Mg сплавов	
309LP	рутиловая порошковая проволока для нержавеющих сталей	
316LP	рутиловая порошковая проволока для нержавеющих сталей	
CrNiMn	коррозионностойкая хромоникелевомарганцевая проволока для сварки	
	аустенитных нержавеющих сталей, может маркироваться Св-08Х2ОН9Г7Т	

8.5 КНОПКА РЕЖИМ

Кнопка РЕЖИМ позволяет выбрать режим сварки, наиболее подходящий требованиям техзадания. Максимальный перечень режимов приведен *Табл. 11*. В зависимости от программной комплектации данный список может быть редуцирован.

Табл. 11 — Перечень сварочных режимов для механизированной сварки

Режим			Моле	Moдель EVOMIG)MIG			Описание режима
	(1)	350; 400		450; 50	00; 55(450; 500; 550; 650 500T	500TP	
	Basic	Basic ProFe ProAl	ProAl		ProFe	ProAl	ТР	
Normal	•	•		•	•	•	•	стандартная механизированная сварка с короткими замыканиями
Root	•	•	•	•	•	•	•	сварка короткой «холодной» дугой. Оптимален для корневых швов и тонких листов металла
DAC-MD	•	•	•	•	•	•	•	сварка с контролем коротких замыканий и импульсной модуляцией тока (Direct Arc Control Modulation). Обеспечивает более высокую скорость сварки, минимальное разбрызгивание и меньшее тепловложение по сравнению с режимом Normal
Normal-2N				•	•	•	•	сварка с чередованием двух токов с короткими замыканиями для вертикальных, потолочных и облицовочных швов
Jet-DAC				•	•	•	•	сварка с глубоким проплавлением короткими замыканиями
Root-P					•	•	•	сварка с применением импульсной модуляции тока для корневых швов. Позволяет формировать плоский обратный валик при сварке в вертикальном положении сверху вниз
Root-Pulse					•	•	•	сварка с чередованием режимов Pulse и Root. Позволяет контролировать тепловложение и формировать чешуйчатость шва
JetArc					•	•	•	сварка динамичной концентрированной длинной дугой с глубоким проникновением с возможностью формирования обратного валика шва
Super-Pulse		•	•		•	•	•	сварка с чередованием режимов Pulse и Normal. Применяется для вертикальных швов в стали. Позволяет формировать чешуйчатые швы
Pulse Fe		•	•		•	•	•	импульсные процессы для сталей
Pulse-2P			•		•	•	•	сварка с чередованием двух импульсных токов. Применяется для вертикальных, потолочных и облицовочных швов, при сварке тонких материалов. Позволяет контролировать тепловложение и формировать чешуйчатость шва без разбрызгивания
Pulse Al			•			•	•	импульсные процессы для алюминиевых сплавов
csc							•	сварка корневого слоя методом управляемого короткого замыкания

8.6 КНОПКА ЦИКЛОГРАММА

На экране ЦИКЛОГРАММА изображен стилизованный график, на котором отображены все этапы цикла сварки, их названия и цифровые значения параметров, характеризующих свойства данного участка графика (*Puc. 22*). Циклограмма служит для наглядного отображения регулируемых параметров процесса сварки.

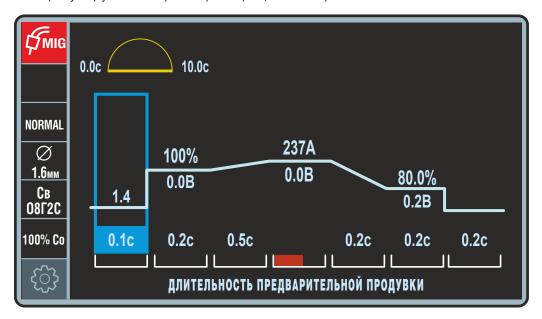


Рис. 22 — Экран ЦИКЛОГРАММА

Прокручиванием левой ручки управления по этапам сварки на циклограмме перемещается прямоугольник. В пределах одного этапа переключение происходит между параметрами этапа. Для настройки нужного значения необходимо нажать левую ручку управления, при этом редактируемое значение меняет цвет. После настройки необходимо повторно нажать левую ручку управления для сохранения. Диапазон регулировки и текущее значение каждого из параметров циклограммы отображены полумесяцем в верхней части экрана (слева над циклограммой). Для отмены и выхода из данного меню необходимо нажать кнопку ЦИКЛОГРАММА или правую ручку управления.

8.6.1 ЦИКЛОГРАММА ДЛЯ РЕЖИМА MIG/MAG

Стандартный вид циклограммы для режима электродуговой сварки MIG/MAG (МП/МПИ/МПС) приведен на $Puc.\ 22$. Список параметров циклограммы и диапазоны их регулирования приведены в $Taбл.\ 12$.

Табл. 12— Параметры циклограммы режима электродуговой сварки MIG/MAG

Nº	Параметр циклограммы	Диапазон	Примечание
1	ДЛИТЕЛЬНОСТЬ ПРОДУВКИ ДО СВАРКИ	010 с	Задает продолжительность обдува сварочной проволоки защитным газом для защиты зоны сварки от окисления
2	СКОРОСТЬ ПОДАЧИ НА СТАРТЕ	1,05,0 м/с	Скорость подачи сварочной проволоки до момента касания о свариваемую деталь
3	ДЛИТЕЛЬНОСТЬ СТАРТОВОГО ТОКА	020 с	Установка длительности стартового тока
4	СТАРТОВЫЙ ТОК	50200 %	Диапазон определяется выбранными параметрами сварки
5	ДЛИНА ДУГИ СТАРТОВОГО ТОКА	-9,99,9 y.e.	См. «Табл. 7— Корректоры сварочной дуги» на стр. 35
6	ДЛИТЕЛЬНОСТЬ ПЕРЕХОДА К ОСН. ТОКУ	020 c	Задает длительность перехода от стартового тока к основному току
7	основной ток	minmax A	Диапазон определяется выбранными параметрами сварки
8	ДЛИНА ДУГИ	-9,99,9 y.e.	См. Табл. 7
9	ДЛИТЕЛЬНОСТЬ СПАДА ТОКА	030 с	Задает длительность перехода от основного тока к току заварки кратера
10	ДЛИТЕЛЬНОСТЬ ЗАВАРКИ КРАТЕРА	010 c	Заполняет кратер электродным металлом
11	ТОК ЗАВАРКИ КРАТЕРА	20100 %	Диапазон определяется выбранными параметрами сварки
12	ДЛИНА ДУГИ ЗАВАРКИ КРАТЕРА	-9,99,9 y.e.	См. Табл. 7
13	ДЛИТЕЛЬНОСТЬ ПРОДУВКИ ПОСЛЕ СВАРКИ	0,230 c	Используется для защиты остывающей сварочной ванны от атмосферных газов и охлаждения горелки

8.6.2 ЦИКЛОГРАММА ДЛЯ РЕЖИМА CSC

Для режима CSC циклограмма отличается от стандартной, представленной в предыдущем разделе. Посредством циклограммы в режиме CSC можно управлять не только началом и завершением сварки, но и параметрами режима (*Puc. 23*).

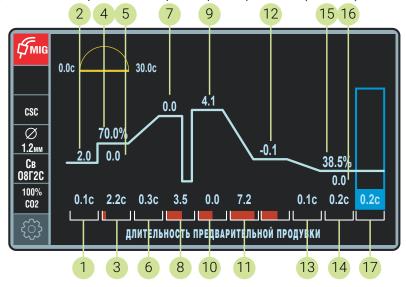


Рис. 23 — Экран ЦИКЛОГРАММА в режиме CSC

Корректировка параметров циклограммы производится аналогично изменению параметров основной циклограммы сварки, представленной в предыдущем разделе. Список параметров циклограммы для режима СSC и диапазоны их регулирования приведены в *Табл. 13*.

Табл. 13 — Параметры циклограммы режима CSC

Nō	Параметр циклограммы	Диапазон	Примечание
1	ДЛИТЕЛЬНОСТЬ ПРОДУВКИ ДО СВАРКИ	010 с	Задает продолжительность обдува сварочной проволоки защитным газом для защиты зоны сварки от окисления
2	СКОРОСТЬ ПОДАЧИ НА СТАРТЕ	1,05,0 м/с	Скорость подачи сварочной проволоки до момента касания о свариваемую деталь
3	ДЛИТЕЛЬНОСТЬ СТАРТОВОГО ТОКА	020 c	Установка длительности стартового тока

Nº	Параметр циклограммы	Диапазо	ΣΗ	Примечание
4	СТАРТОВЫЙ ТОК	minmax	А	Диапазон определяется выбранными параметрами сварки
5	ДЛИНА ДУГИ СТАРТОВОГО ТОКА	-9,99,9	y.e.	См. «Табл. 7— Корректоры сварочной дуги» на стр. 35
6	ДЛИТЕЛЬНОСТЬ ПЕРЕХОДА К ОСН. ТОКУ	020	С	Задает длительность перехода от стартового тока к основному току
7	КОРРЕКТОР ТОКА КОРОТКОГО ЗАМЫКАНИЯ	-9,99,9	y.e.	Минимальное и максимальное значение определяются выбранными параметрами сварки
8	СКОРОСТЬ ПОДАЧИ ПРОВОЛОКИ	1,54,5	м/ мин	Скорость подачи сварочной проволоки при сварке в режиме CSC
9	КОРРЕКТОР ТОКА ИМПУЛЬСА	-9,99,9	y.e.	Корректировка тока импульса дугового процесса
10	КОРРЕКТОР ДЛИТЕЛЬНОСТИ ТОКА ИМПУЛЬСА	-9,99,9	y.e.	Корректировка длительности тока импульса дугового процесса
11	КОРРЕКТОР ДЛИТЕЛЬНОСТИ ПЕРЕХОДА К БАЗОВОМУ ТОКУ	-9,99,9	y.e.	Корректировка длительности перехода от тока импульса к базовому току дугового процесса
12	КОРРЕКТОР БАЗОВОГО ТОКА	-9,99,9	y.e.	Корректировка базового тока дугового процесса
13	ДЛИТЕЛЬНОСТЬ СПАДА ТОКА	030	С	Задает длительность перехода от основного тока к току заварки кратера
14	ДЛИТЕЛЬНОСТЬ ЗАВАРКИ КРАТЕРА	010	С	Заполняет кратер электродным металлом
15	ТОК ЗАВАРКИ КРАТЕРА	minmax	A	Диапазон определяется выбранными параметрами сварки

Продолжение таблицы на следующей странице

Nº	Параметр циклограммы	Диапазон	Примечание
16	ДЛИНА ДУГИ ЗАВАРКИ КРАТЕРА	-9,99,9 y.e.	См. Табл. 7
17	ДЛИТЕЛЬНОСТЬ ПРОДУВКИ ПОСЛЕ СВАРКИ	0,230 c	Используется для защиты остывающей сварочной ванны от атмосферных газов

Вынесение основных параметров режима в одну циклограмму упрощает и ускоряет настройку и регулировку процесса во время сварки.

В режиме CSC реализована синергетика, оптимальным образом устанавливающая параметры режима со скоростью подачи проволоки. Эмпирическим путем для каждой скорости подачи установлен средний ток сварки (*Табл. 14*), который отображается на экране дисплея после завершения сварки. Параметры сварки зависят также от диаметра и материала проволоки.

Табл. 14— Параметры сварки в режиме CSC для проволоки 08Г2С диаметром 1,2 в CO2

Скорость подачи проволоки, м/мин	Средний ток сварки, А	Ток импульса, А	Базовый ток, А
1,5	50	280	20
2,0	75	300	25
2,5	90	320	30
3,0	110	350	40
3,5	130	375	50
4,0	150	400	60
4,5	170	420	70

При установке на главном экране среднего тока или скорости подачи, будут установлены представленные в *Табл. 14* значения основных параметров. Применяя корректоры 7, 9, 10, 11 и 12 сварщик имеет возможность изменить представленные в *Табл. 14* параметры сварки.

ВНИМАНИЕ!

Установленные параметры сварки будут сохранены автоматически через 8 секунд после введения (индикатор сохранения перестанет мигать).

Но в режиме CSC автосохранение параметров не предусмотрено! Сохранение корректировок в режиме CSC производится вручную в общем порядке (см. пп. 8.3.1.1)

8.6.3 ЦИКЛОГРАММА ДЛЯ РЕЖИМА РУЧНОЙ ДУГОВОЙ СВАРКИ

Для режима ручной дуговой сварки ММА (РД) в нормальном и импульсном режимах циклограмма отличается от стандартной, представленной в п. 8.6.1. Посредством циклограммы в режиме ММА можно управлять началом сварки и параметрами режима (Рис. 24). Список параметров циклограммы режима ММА и диапазоны их регулирования представлены в Табл. 15.

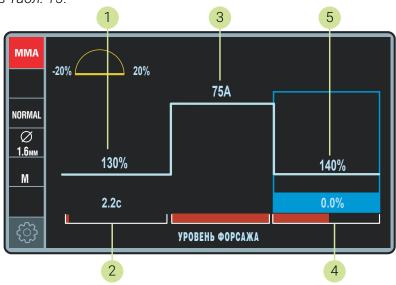
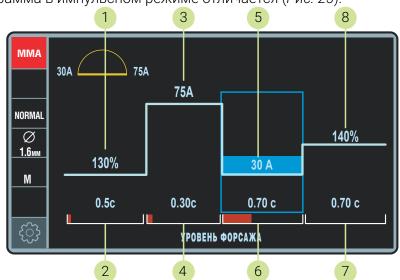



Рис. 24 — Экран ЦИКЛОГРАММА в режиме ММА

Табл. 15 — Параметры циклограммы режима ММА

Nō	Параметр циклограммы	Диапазон	Примечание
1	СТАРТОВЫЙ ТОК	50200 % основного тока	Для стабильного зажигания дуги генерируется импульс тока, длительность и сила тока
2	ДЛИТЕЛЬНОСТЬ СТАРТОВОГО ТОКА	0,110,0 c	устанавливается сварщиком по его усмотрению
3	основной ток	minmax A	Значение определяется диаметром электрода и требованиями к сварочному соединению
4	УРОВЕНЬ ФОРСАЖА	-20+20 % ЗАВОДСКОЙ УСТАНОВКИ	Определяет уровень увеличения тока сварки при снижении напряжения на дуге
5	ОГРАНИЧЕНИЕ ТОКА КОРОТКОГО ЗАМЫКАНИЯ	100200 % ЗАВОДСКОЙ УСТАНОВКИ	При коротком замыкании неконтролируемое увеличение тока КЗ может приводить к разбрызгиванию электродного материала

Циклограмма в импульсном режиме отличается (Рис. 25).

Рис. 25 — Экран ЦИКЛОГРАММА в режиме ММА (импульсный режим)

Корректировка параметров циклограммы производится аналогично изменению параметров основной циклограммы сварки, представленной в *п. 8.6.1*. Список параметров циклограммы режима ММА в импульсном режиме и диапазоны их регулирования приведены в *Табл. 16*.

Табл. 16 — Параметры циклограммы в режиме ММА (импульсный режим)

Nō	Параметр циклограммы	Диапазон	Примечание
1	ВЕЛИЧИНА СТАРТОВОГО ТОКА	50200 % основного тока	Для стабильного зажигания дуги генерируется импульс тока, длительность и сила тока
2	ДЛИТЕЛЬНОСТЬ СТАРТОВОГО ТОКА	0,110,0 с	устанавливается сварщиком по его усмотрению
3	основной ток	minmax A	Значение определяется диаметром электрода и требованиями
4	ДЛИТЕЛЬНОСТЬ ОСНОВНОГО ТОКА	0,15,0 с	к сварочному соединению
5	ТОК ПАУЗЫ	minmax A	Значение определяется диаметром электрода и требованиями
6	ДЛИТЕЛЬНОСТЬ ТОКА ПАУЗЫ	0,15,0 c	к сварочному соединению

Продолжение таблицы на следующей странице

Nō	Параметр циклограммы	Диапазон	Примечание
7	УРОВЕНЬ ФОРСАЖА	-20+20 % заводской установки	Определяет уровень увеличения тока сварки при снижении напряжения на дуге
8	ОГРАНИЧЕНИЕ ТОКА КОРОТКОГО ЗАМЫКАНИЯ	100200 % ЗАВОДСКОЙ УСТАНОВКИ	При коротком замыкании неконтролируемое увеличение тока КЗ может приводить к разбрызгиванию электродного материала

8.6.4 ЦИКЛОГРАММА ДЛЯ РЕЖИМА АРГОНОДУГОВОЙ СВАРКИ

Для режима аргонодуговой сварки TIG DC (РАД) с зажиганием дуги при контактном поджиге в нормальном и импульсном режимах циклограмма отличается от стандартной, представленной n.~8.6.1. Посредством циклограммы в режиме TIG DC можно управлять началом сварки и параметрами режима (Puc.~26).

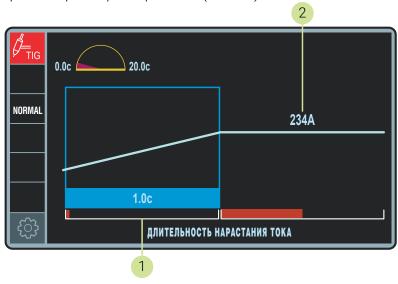
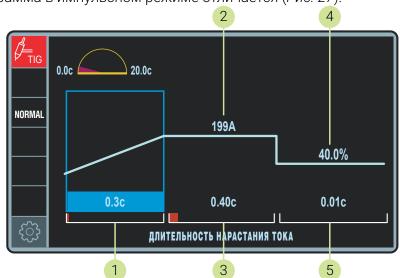



Рис. 26 — Экран ЦИКЛОГРАММА в режиме TIG DC

Табл. 17— Параметры циклограммы режима TIG DC

Nº	Параметр циклограммы	Диапазон	Примечание
1	ДЛИТЕЛЬНОСТЬ НАРАСТАНИЯ ТОКА	020 c	Для стабильного зажигания дуги
2	основной ток	minmax A	Значение определяется требованиями к сварочному соединению

Циклограмма в импульсном режиме отличается (Рис. 27).

Рис. 27 — Экран ЦИКЛОГРАММА в режиме TIG DC (импульсный режим)

Корректировка параметров циклограммы производится аналогично изменению параметров основной циклограммы сварки, представленной в разделе 8.6.1. Список параметров циклограммы режима TIG в импульсном режиме и диапазоны их регулирования приведены в *Табл. 18*.

Табл. 18 — Параметры циклограммы в режиме TIG DC (импульсный режим)

Nō	Параметр циклограммы	Диапазон	Примечание
1	ДЛИТЕЛЬНОСТЬ НАРАСТАНИЯ ТОКА	020 c	Для стабильного зажигания дуги ток плавно нарастает до сварочного за установленного время
2	основной ток	minmax A	Значение определяется требованиями к сварочному
3	ДЛИТЕЛЬНОСТЬ ОСНОВНОГО ТОКА	0,015,00 c	соединению
4	ТОК ПАУЗЫ	minmax A	Значение определяется требованиями к сварочному
5	ДЛИТЕЛЬНОСТЬ ТОКА ПАУЗЫ	0,015,00 c	соединению

8.7 КНОПКА ТАКТ

Кнопка ТАКТ задает режим управления циклом сварки— способ запуска и окончания сварочного процесса с кнопки горелки. Перечень возможных режимов приведен в *Табл. 19*.

Табл. 19 — Режимы управления циклом сварки

Обозначение		Режим управления
текстовое	графическое	
2T	<u> </u>	стандартный двухтактный
2TB	O	двухтактный с ограничением времени
2TK	ĵ∏ţ	контактное зажигание дуги (опция)
4T	<u> </u>	стандартный четырехтактный
4TB	•	четырехтактный с ограничением времени
4 TГ	<u>↑</u> ↓∏↑↓	четырехтактный с продувкой газа

8.7.1 СТАНДАРТНЫЙ ДВУХТАКТНЫЙ РЕЖИМ

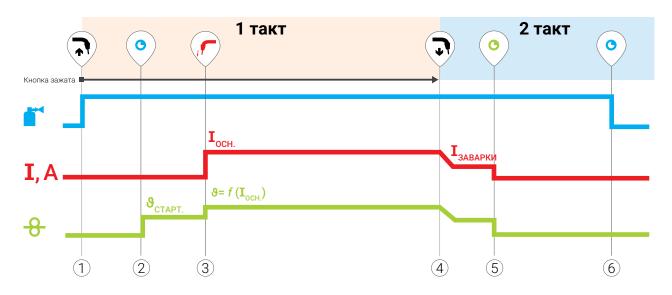


Рис. 28 — Диаграмма работы в двухтактном режиме

1 такт

1 Для запуска продувки защитного газа перед сваркой нажмите и удерживайте кнопку сварочной горелки.

2 По истечению времени предварительной продувки мотор устройства подачи проволоки запустится с начальной скоростью.

3 Для поджига электрической дуги коснитесь проволочным электродом изделия, потечет сварочный ток и устройство подачи проволоки перейдет на выставленную скорость подачи проволоки в соответствии с настройками циклограммы. Если в настройке циклограммы заданы параметры стартового тока, то сначала будет отработан этот цикл по заданному времени. Выполняйте сварку не отпуская кнопку.

2 такт

4 Для окончания сварки отпустите кнопку сварочной горелки.

5 По истечении настроенного времени заварки кратера двигатель устройства подачи проволоки остановится.

6 По истечению времени продувки подача газа прекратится автоматически.

8.7.2 ДВУХТАКТНЫЙ РЕЖИМ С ОГРАНИЧЕНИЕМ ВРЕМЕНИ

Отличается от стандартного двухтактного режима только тем, что длительность работы основного тока принудительно ограничивается по времени (п. 4 на *Рис.* 29). Используется для выполнения швов типа «прихватка» и «заклёпка».

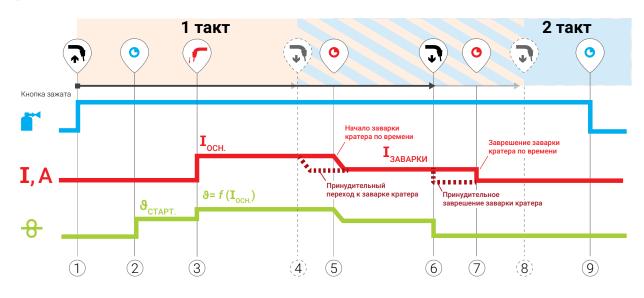


Рис. 29 — Диаграмма работы в двухтактном режиме с ограничением времени

1 такт

1 Для запуска продувки защитного газа перед сваркой нажмите и удерживайте кнопку сварочной горелки.

2 По истечению времени предварительной продувки мотор устройства подачи проволоки запустится с начальной скоростью.

3 Для поджига электрической дуги коснитесь проволочным электродом изделия, потечет сварочный ток и устройство подачи проволоки перейдет на выставленную скорость подачи проволоки. Не отпуская кнопку выполняйте сварку.

4 Для принудительного перехода к заварке кратера отпустите кнопку горелки. В противном случае сварка продолжится до истечения настроенного времени протекания основного тока.

2 такт

5 По истечении настроенного времени длительности основного тока произойдет отработка спада тока к току заварки кратера.

6 Чтобы принудительно закончить заварку кратера отпустите кнопку сварочной горелки.

7 По истечению предустановленного времени заварки кратера ток прекратится независимо от положения кнопки сварочной горелки. Начнется отсчет времени продувки.

8 После истечения предустановленного времени заварки кратера положение кнопки сварочной горелки не влияет на процесс, её можно отпустить в произвольный момент.

9 По истечению времени продувки подача газа прекратится автоматически.

8.7.3 КОНТАКТНОЕ ЗАЖИГАНИЕ ДУГИ

Контактное зажигание — опциональная функция, по умолчанию не входит в программную комплектацию аппарата. При контактном зажигании дуги кнопка сварочной горелки не используется.

ВНИМАНИЕ!

При включении контактного зажигания дуги проволока постоянно находится под напряжением 93 В! Не допускайте случайного контакта с металлом во избежание возникновения короткого замыкания. Это может привести к пожару, повреждению оборудования, травмам и пр.

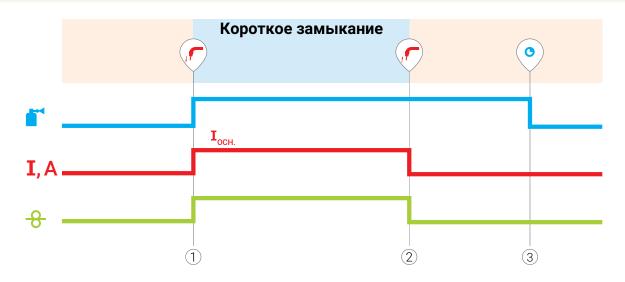


Рис. 30 — Диаграмма работы в режиме контактного зажигания дуги

Принцип работы:

1 Поднесите горелку к свариваемой детали и коснитесь её проволокой. Про-изойдёт замыкание проволоки о деталь, откроется клапан подачи защитного газа и начнётся процесс сварки.

2 Для остановки сварки отведите горелку в сторону от заготовки. При этом дуга оборвется, и процесс сварки завершится.

3 По истечению времени продувки подача газа прекратится автоматически.

8.7.4 СТАНДАРТНЫЙ ЧЕТЫРЕХТАКТНЫЙ РЕЖИМ

Отличается от двухтактного тем, что во время выполнения сварки нет необходимости удерживать кнопку горелки.

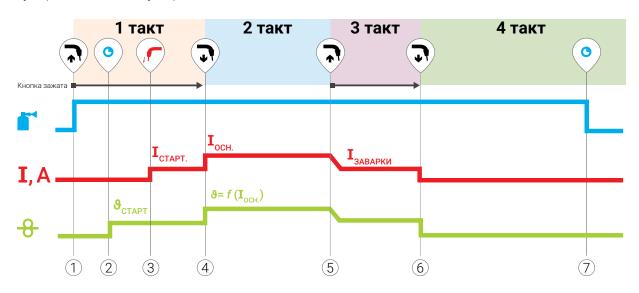


Рис. 31 — Диаграмма работы в четырехтактном режиме

1 такт

1 Для запуска продувки защитного газа перед сваркой нажмите кнопку сварочной горелки.

2 По истечению времени предварительной продувки мотор устройства подачи проволоки запустится с начальной скоростью.

3 Для поджига электрической дуги коснитесь электродом изделия. Сварка будет производится на стартовом токе, значение которого выставлено на циклограмме.

2 такт

4 Отпустите кнопку горелки. Мотор устройства подачи проволоки перейдет на выставленную скорость подачи проволоки. Сварочный ток достигнет основного значения. Выполняйте сварку.

3 такт

5 Для перехода к току заварки кратера нажмите и удерживайте кнопку сварочной горелки. Выполните заварку кратера.

4 такт

6 Для окончания сварки отпустите кнопку сварочной горелки. Двигатель устройства подачи проволоки остановится. Начинается отсчёт времени продувки газа.

7 По истечению времени продувки подача газа прекратится автоматически.

8.7.5 ЧЕТЫРЕХТАКТНЫЙ РЕЖИМ С ОГРАНИЧЕНИЕМ ВРЕМЕНИ

Отличается от стандартного четырехтактного режима тем, что задаётся длительность работы заварки кратера и стартового тока (п. 4 и п. 10 на *Puc. 32*).

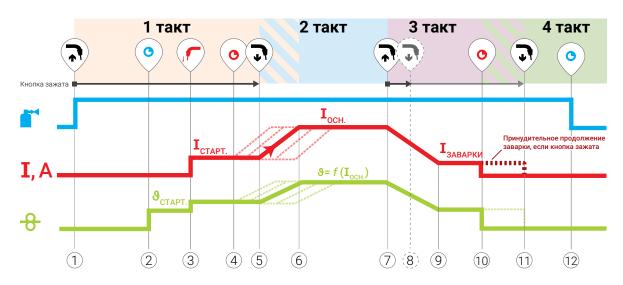


Рис. 32 — Диаграмма работы в четырехтактном режиме с ограничением времени

1 такт

1 Для запуска продувки защитного газа перед сваркой нажмите и удерживайте кнопку горелки.

2 После заданного времени продувки мотор устройства подачи проволоки запустится с начальной скоростью до момента касания проволокой детали.

3 В момент касания проволокой изделия потечет стартовый ток.

4 После окончания заданного времени стартового тока его величина будет сохраняться до момента отпускания кнопки. Если опустить кнопку горелки раньше предустановленного времени работы стартового тока, то этот ток будет течь до окончания выставленного времени.

2 такт

5 После отпускания кнопки или истечения времени старта ток начнет изменяться до рабочего значения.

6 По завершению переходного процесса, сварочный процесс будет продолжаться на рабочем значении тока.

3 такт

7 Для перехода к заварке кратера нажиите кнопку горелки.

8 Если опустить кнопку горелки раньше предустановленного времени заварки кратера, то процесс будет протекать до истечения времени заварки кратера.

4 такт

9 По завершению переходного процесса, ток примет значение тока заварки кратера.

10 После истечения времени тока заварки кратера, ток прекратится, двигатель устройства подачи проволоки остановится. Начнётся отсчёт времени продувки газа.

11 Если продолжать удерживать нажатой кнопку горелки после истечения времени заварки кратера, то заварка продлится до момента отпускания кнопки.

12 По истечению времени продувки подача газа прекратится автоматически.

8.7.6 ЧЕТЫРЕХТАКТНЫЙ РЕЖИМ С ПРОДУВКОЙ ГАЗА

Отличается от стандартного четырехтактного режима тем, что длительность продувки до и после сварки управляется кнопкой горелки, а токи старта и заварки кратера не регулируются и равны основному.

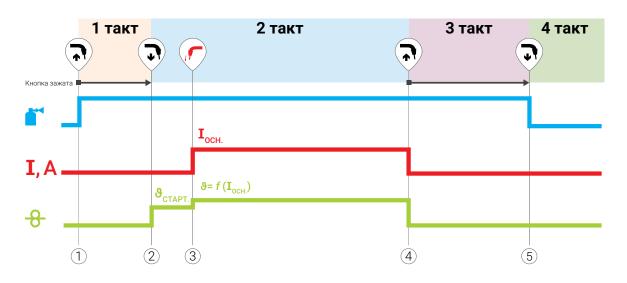


Рис. 33 — Диаграмма работы в четырехтактном режиме с продувкой газа

1 такт

1 Для запуска продувки защитного газа перед сваркой нажмите кнопку сварочной горелки.

2 такт

2 Отпустите кнопку сварочной горелки — мотор устройства подачи проволоки перейдет на начальную скорость подачи до момента касания электрода с деталью.

3 После касания проволокой детали сварочный ток достигнет рабочего значения.

3 такт

4 Для завершения сварки нажмите кнопку горелки.

4 такт

5 Для прекращения подачи газа, отпустите кнопку горелки.

8.8 КНОПКА МЕНЮ

Кнопка МЕНЮ предназначена для отображения меню дополнительных настроек сварочного аппарата — включение блока жидкостного охлаждения, просмотр ошибок, сброс на заводские настройки и прочих (*Puc. 34*).

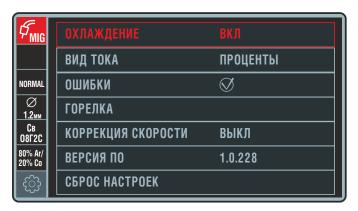


Рис. 34 — Меню настроек аппарата

8.8.1 ОХЛАЖДЕНИЕ

По запросу Покупателя сварочный аппарат может комплектоваться блоком жидкостного охлаждения — БЖО (п. 5.1). Пункт ОХЛАЖДЕНИЕ задает режим работы БЖО. Перечень режимов БЖО приведён в *Табл. 20*.

Табл. 20 — Режимы работы блока жидкостного охлаждения

Режим	Описание
ВКЛ	БЖО постоянно работает независимо от нажатия на кнопку горелки
ABTO	БЖО включается в момент поджига дуги. Продолжает работать во время горения дуги. Отключается через одну минуту после того как дуга погасла или температура охлаждающей жидкости опустилась ниже плюс 50 °C
ВЫКЛ	БЖО не работает (режим для горелки с газовым охлаждением)

ВНИМАНИЕ!

При использовании БЖО после включения аппарата следует проверить уровень охлаждающей жидкости в бачке и при необходимости долить охлаждающую жидкость.

ПРИМЕЧАНИЕ!

При работе сварочной горелкой с маленьким сечением канала подачи охлаждающей жидкости в режиме АВТО, в начале проведения сварочных работ при включении насоса БЖО, могут происходить незначительные толчки через кабель-пакет в горелку/руку сварщика. Чтобы исключить это неудобство, необходимо переключить работу БЖО в режим ВКЛ.

i

8.8.2 ВИД ТОКА

Пункт ВИД ТОКА задает единицы отображения тока на циклограмме: в процентах от основного тока (%) или в амперах (A).

8.8.3 ОШИБКИ

Пункт ОШИБКИ содержит информацию об ошибках, диагностируемых системой аппарата. При отсутствии ошибок отображается символ , при возникновении ошибки отображается символ . Чтобы просмотреть сообщение об ошибке, нажмите на левую ручку управления, а чтобы пролистать список сообщений, прокрутите её.

8.8.4 ГОРЕЛКА

Пункт ГОРЕЛКА задает алгоритм переключения сохраненных ячеек с кнопки горелки.

Табл. 21 — Печень алгоритмов управления с кнопки горелки

Алгоритм	Описание
ДВОЙНОЕ НАЖАТИЕ	переключение программ после двойного нажатия кнопки горелки
ВИТАЖАН ВОНЙОЧТ	переключение программ после тройного нажатия кнопки горелки
МНОГОКРАТНОЕ НАЖАТИЕ	переключение программ по номеру сохранённой ячейки. То есть для загрузки программы №3 необходимо нажать кнопку горелки трижды, для загрузки программы №4 — четырежды, и т.д.

Выбор следующей или предыдущей программы задается после выбора алгоритма управления с горелки.

ПРИМЕЧАНИЕ!

МНОГОКРАТНОЕ НАЖАТИЕ работает в диапазоне сохранных ячеек от 2 до 8.

8.8.5 СПЯЩИЙ РЕЖИМ

Пункт СПЯЩИЙ РЕЖИМ задает промежуток времени, по истечении которого дисплей отключается и аппарат переходит в режим минимального энергопотребления. Для возврата из спящего режима необходимо нажать/провернуть любую ручку управления или нажать любую кнопку на пульте/горелке.

8.8.6 КОРРЕКЦИЯ СКОРОСТИ

Пункт КОРРЕКЦИЯ СКОРОСТИ включает или отключает ручную регулировку скорости подачи сварочной проволоки при заданном сварочном токе в режиме MIG/MAG. При этом синергетическое управление не применяется.

8.8.7 ВЕРСИЯ ПО

Пункт ВЕРСИЯ ПО отображает номер версии программной прошивки.

8.8.8 CFPOC HACTPOEK

Пункт СБРОС НАСТРОЕК возвращает параметры на заводские настройки.

ВНИМАНИЕ!

После сброса настроек сохранённые сварочные задания в ячейках стираются!

ВНИМАНИЕ!

Если после сброса настроек на пульте ВПУ не отображаются сварочные параметры или отображается сообщение «НЕТ СВЯЗИ», перезагрузите аппарат (выключите и включите снова).

8.8.9 ОГРАНИЧЕННЫЙ РЕЖИМ

Пункт ОГРАНИЧЕННЫЙ РЕЖИМ доступен в меню, если сварочный аппарат оборудован Системой ограничения доступа (см. *п.* 10).

Пункт ОГРАНИЧЕННЫЙ РЕЖИМ закрывает доступ к настройкам аппарата. При активации данного режима сила тока меняется в пределах от минимума да настроенной заранее величины. В ограниченном режиме также доступны корректор длины дуги, динамики, выбор тактов и блокировка.

ВНИМАНИЕ!

Все необходимые настройки следует произвести заранее.

8.8.10 УПРАВЛЕНИЕ КАРТАМИ

Пункт УПРАВЛЕНИЕ КАРТАМИ доступен в меню, если сварочный аппарат оборудован Системой ограничения доступа (см. *п.* 10).

Пункт УПРАВЛЕНИЕ КАРТАМИ позволяет добавлять, удалять карты и менять уровень доступа карт.

8.9 КНОПКА БЛОКИРОВКА

Кнопка БЛОКИРОВКА предназначена для блокировки текущих настроек и защиты органов управления пульта от случайного нажатия кнопок и вращения ручек управления. Для активации блокировки коротко нажмите на кнопку БЛОКИРОВКА, для отмены — нажмите и удерживайте кнопку в течение двух секунд. При включенной блокировке отображается символ замка в верху экрана — .

9 ИНСТРУКЦИЯ К ПУЛЬТУ УПРАВЛЕНИЯ ВПУ

9.1 ОБЩИЕ СВЕДЕНИЯ

Для управления сварочным аппаратом также применяется Вспомогательный пульт управления ВПУ-01 или ВПУ-02 (далее — ВПУ), который имеет более компактные размеры, но ограниченную функциональность относительно ОПУ-01 (*Puc. 35*). Работа вспомогательного пульта ВПУ осуществляется только через подключение к основному пульту ОПУ-01.

Рис. 35 — Внешний вид вспомогательного пульта управления ВПУ-02

Интерфейс вспомогательного пульта управления ВПУ состоит из монохромного дисплея и двух ручек управления.

Вспомогательный пульт управления ВПУ устанавливается в компактное устройство подачи проволоки УПП-200К, которое не входит в стандартную комплектацию и приобретается отдельно.

Вспомогательный пульт управления ВПУ-01может быть установлен на устройства подачи проволоки УПП-300П и УПП-300М, а ВПУ-02 — на УПП-200К, при этом основной пульт управления ОПУ-01 устанавливается в корпус сварочного аппарата.

Вспомогательный пульт управления ВПУ не входит в стандартную комплектацию и приобретается отдельно или в составе УПП.

9.2 РЕЖИМЫ РАБОТЫ ВПУ

9.2.1 РЕЖИМ НАСТРОЙКИ

В режиме настройки левая ручка управления отвечает за параметры, расположенные слева на дисплее, правая — справа (*Puc. 36*). Вверху экрана показаны сварочные параметры переключения, между которыми осуществляется по нажатию соответствующей ручки, а регулировка выбранного параметра — поворотом.

Рис. 36 — Интерфейс ВПУ

На экране могут быть отображены не все сварочные параметры из-за ограничения разрешения экрана, для их просмотра реализована функция прокрутки. Выбранный сварочный параметр отображается черным цветом на белом фоне. В зависимости от режима сварки, сварочные параметры могут варьироваться (*Табл. 22*).

Табл. 22 — Режимы и параметры для управления с ВПУ

Режим	Лева	ая ручка управления	Права	я ручка управления
MIG	I	сварочный ток	U	напряжение
	<u>+</u>	диаметр проволоки	ሐ	динамика
	9	скорость подачи проволоки	pan	длина дуги
	MIG	режим сварки	89	номер сохраненной ячейки
			4T	тактность
MIGM	00	скорость подачи проволоки	U	напряжение
	МІСМ	режим сварки	ሐ	динамика
			89	номер сохраненной ячейки
			4T	тактность
ММА	I	сварочный ток	U	напряжение дуги (не регулируемый)
COU	MIG	режим сварки	89	номер сохраненной ячейки

9.2.2 РЕЖИМ ОТОБРАЖЕНИЯ ОШИБКИ

В случае потери связи с основным пультом ОПУ-01 во весь экран отображается сообщение об ошибке: НЕТ СВЯЗИ.

9.2.3 РЕЖИМ ИНДИКАЦИИ

В режим индикации пульт переходит при достижении основного тока.

В режиме индикации отображаются действительные значения параметров сварочной дуги в режиме реального времени: в левой части экрана — мгновенное значение тока сварочной дуги, в правой — мгновенное напряжение сварочной дуги.

Выход из этого режима происходит в двух случаях:

- при нажатии или повороте любой ручки управления в режим задания,
- при окончании сварки в режим HOLD.

9.2.4 PEЖИМ HOLD

В режим HOLD пульт переходит в момент прекращения сварки. В этом режиме на экране отображаются средние значения за время совершенной сварки: в левой части — средний ток сварки, в правой — среднее напряжение сварки. В режиме HOLD фон экрана белый, а параметры отображаются черным цветом.

Выход из режима HOLD осуществляется нажатием, поворотом ручки управления или нажатием кнопки горелки.

10 СИСТЕМА ОГРАНИЧЕНИЯ ДОСТУПА

Опционально аппарат может быть оборудован системой ограничения доступа. В этом случае аппарат дополняется считывателем, а в комплект поставки включаются две карты доступа — карта «Администратор» и карта «Пользователь».

При прикладывании к считывателю карты «Администратор» для работы дополнительно открывается два пункта меню «Ограниченный режим» и «Управление картами».

Пункт меню УПРАВЛЕНИЕ КАРТАМИ позволяет Администратору регистрировать и удалять дополнительные карты допуска, включая карты «Администратор». Возможна регистрация прав доступа не только на отдельную карту, но и на заводской пропуск, ключ-таблетку или другие носители.

10.1 ПРИНЦИП ОГРАНИЧЕНИЯ ДОСТУПА

Активирование Администратором ОГРАНИЧЕННОГО РЕЖИМА закрывает доступ к части настроек и регулировок для всех лиц, кроме Администратора.

В ОГРАНИЧЕННОМ РЕЖИМЕ сила тока может регулироваться только в диапазоне от минимума до заранее установленной Администратором величины. Доступной сохраня-

ется корректировка длины дуги, динамики, выбор тактов и блокировка.

При выключенном ОГРАНИЧЕННОМ РЕЖИМЕ аппарат, оборудованный системой ограничения доступа, запрашивает при включении карту доступа.

Пока карта «Администратор» или карта «Пользователь» не будут приложены к считывателю, аппарат функционировать не будет.

10.2 УРОВЕНЬ ДОСТУПА «АДМИНИСТРАТОР»

Карта «Администратор» открывает все возможные настройки и регулировки аппарата, обеспечивает возможность сохранения сварочных программ, а также работу в пунктах меню «Ограниченный режим» и «Управление картами».

Права карты «Администратор» включают право активирования ОГРАНИЧЕННОГО РЕЖИМА и установления ограничения настроек, право регистрации и удаления дополнительных карт допуска, включая карты «Администратор»..

ВНИМАНИЕ!

Не удаляйте карту единственного Администратора! Защита от удаления последней карты доступа «Администратор» предусмотрена только на аппаратах, выпущенных после декабря 2019 года.

Прикладывание к считывателю карты «Администратор» отключает ОГРАНИЧЕН-НЫЙ РЕЖИМ и открывает все возможные настройки и регулировки аппарата.

10.3 УРОВЕНЬ ДОСТУПА «ПОЛЬЗОВАТЕЛЬ»

При выключенном «Ограниченном режиме» карта «Пользователь» позволяет включить аппарат и работать в стандартном состоянии, где доступны все настройки, кроме работы в пунктах меню, открытых исключительно Администратору.

При активированном Администратором ОГРАНИЧЕННОМ режиме карта «Пользователь» позволяет работать в ОГРАНИЧЕННОМ РЕЖИМЕ.

11 НЕИСПРАВНОСТИ

11.1 КОДЫ ОШИБОК

В случае сбоя при работе аппарата на экране пульта управления высветится сообщение об ошибке. Ниже приводится расшифровка и методы устранения.

Табл. 23 — Перечень сообщений об ошибках

П.П.	Текст ошибки	Описание	Рекомендации
1	 низкий уровень ШИМ модулей, проблема с RS1-RX, к.з.РВО9/ РА67/ РВ89/РВ1315/ РЕ0/РЕ17/ РЕ1015/РF2/ РF7/РF8/РF1015/ РG08/РG10/РG13 РG15 RS1-TX/DAC out 1/DAC out 2, обрыв РА812/РА12 N.Т., светодиод красн. внешн./красн. внутр/ зел. ОК/ RS1красн/ RS1зел/ RS2зел, RS2-красн, РF36N.Т. 	Неисправность платы СРU	Сообщить в сервисную службу
2	• Отсутствие + ЗА	Неисправность платы CPU, не детектируется аналоговое питание	Сообщить в сервисную службу
3	• Обрыв I_MOD	Неисправность платы CPU, кабеля управления модулями или одной из плат управления модулями	Проверить подключение и целостность кабелей управления модулями, сообщить в сервисную службу

П.П.	Текст ошибки	Описание	Рекомендации
4	• Отладка или К.З. D_OUT	Неисправность платы СРU или устройства, подключенного к цифровому выходу, или работа в режиме отладки процессора	Выключить и повторно включить питание аппарата, при повторении сообщить в сервисную службу
5	• K.3. VALVE	Неисправность платы CPU, электромагнитного клапана или соединительного кабеля	Проверить клапан и соединительный кабель, заменить при необходимости
6	• Неисправность USART_M	Неисправность платы CPU, кабеля управления модулями или одной из плат управления модулями	Проверить подключение и целостность кабелей управления модулями, сообщить в сервисную службу
7	• K.3. WiFi TX, ? WiFi RX	Неисправность платы CPU или платы OpenWRT	Сообщить в сервисную службу
8	Обрыв SYN_MНеисправность SYN_M	Неисправность платы CPU, кабеля управления модулями или одной из плат управления модулями	Проверить подключение и целостность кабелей управления модулями, сообщить в сервисную службу
10	• Повышенное питание xx В	Неисправность платы CPU, проблемы с внутренним питанием	Сообщить в сервисную службу
11	• Пониженное питание 6.7 В	Неисправность платы СРU или слишком низкое входное питание 12В	Проверить блок питания платы CPU, заменить
12	 Смещение/обрыв/ низкое напряжение/ повышение напряжения фазы 13, питание не в допуске. 	Несоответствие параметров питающей сети либо неисправность платы CPU	Проверить подключение и наличие питающего напряжения соответственных параметров

П.П.	Текст ошибки	Описание	Рекомендации
13	• Нет контроля фаз	Неисправность платы СРU или не подключены провода системы контроля питания	Проверить подключение провода системы контроля питания, сообщить в сервисную службу.
14	• Неисправность измерителя напряжения	Неисправность платы CPU	Сообщить в сервисную службу
15	• Недостаточное напряжение для открытия клапана	Неисправность подающего устройства или блока питания, не позволяющая открыть клапан	Заменить плату УПП, сообщить в сервисную службу
16	• Закорочен клапан	Неисправность подающего устройства или блока питания, возможно закорочен клапан	Проверить, устранить
17	• Не подключен клапан	Неисправность подающего устройства, возможно не подключен клапан	Проверить, устранить
18	• Сгорел транзистор клапана или проблемы измерения	Неисправность подающего устройства	Заменить плату УПП, сообщить в сервисную службу
19	• Недостаточное напряжение для старта мотора	Неисправность подающего устройства или блока питания, не позволяющая запустить мотор	Проверить, устранить
20	• Нет сигнала с энкодера	Неисправность подающего устройства, не позволяющая запустить мотор, возможно не подключен энкодер или мотор	Проверить подключение, устранить

П.П.	Текст ошибки	Описание	Рекомендации
21	• Не удается достигнуть заданной скорости	Неисправность подающего устройства или механические проблемы с проволокой	Проверить, устранить
22	• Проволока уперлась или заклинило мотор	Неисправность подающего устройства или механические проблемы с проволокой	Проверить, устранить
23	• Сгорели драйверы или транзисторы мотора	Неисправность подающего устройства	Заменить плату УПП, сообщить в сервисную службу
24	 Проблема измерения или сгорели транзисторы мотора 	Неисправность подающего устройства	Заменить плату УПП, сообщить в сервисную службу
25	• Мотор не подключен	Неисправность подающего устройства, возможно не подключен мотор	Проверить внутренний монтаж УПП, присоединение разъемов к плате УПП
26	• Не подключено подающее устройство	Не подключено подающее устройство в том режиме, где оно необходимо	Проверить присоединение кабель-пакета
27	• Подключено несколько подающих устройств	Данный режим не поддерживает работу с несколькими подающими устройствами. Возможно, проблема коммутации цифровых интерфейсов	Проверить выбор режима, исправить (для тех конфигураций системы, где это возможно)
28	• Перегрев	Сработал датчик перегрева БЖО	Прекратить работу, дождаться снижения температуры
29	• Нет потока жидкости	Сработал датчик отсутствия потока жидкости БЖО	Проверить отсутствие протечек и засорения в системе.

Текст ошибки	Описание	Рекомендации
 Недостаточный уровень жидкости 	Сработал датчик низкого уровня жидкости БЖО	Проверить отсутствие протечек и долить охлаждающую жидкость
 Задержка/сбой расчета ШИМ/ процесса, закончилось место в памяти, неправильное значение х_аdj высокое/низкое значение коррекции тока/напряжения/ динамики шет характеристики/ конфигурации, ошибка характеристик. 	Программный сбой алгоритма работы платы CPU	Обновить программу в плате СРU, сообщить в сервисную службу
• Неправильно подключены модули	Число подключенных (диагностируемых) модулей не соответствует конфигурации платы CPU	Проверить конфигурацию аппарата через меню настройки, исправить
• Неисправность модуля #n	Сигнал неисправности системы диагностики модуля n (перегрев или отсутствие питания)	Заменить плату управления модуля n (модуль n)
• Нет синхр. модуля #n	До модуля n не доходит сигнал синхронизации	Проверить подключение кабелей управления к модулям
• Запрошено много модулей	Несовместимость пульта и платы CPU	Сообщить в сервисную службу
• Низкое/высокое значение коррекции времени	Программный сбой алгоритма работы платы CPU	Сообщить в сервисную службу
	 Недостаточный уровень жидкости Задержка/сбой расчета ШИМ/ процесса, закончилось место в памяти, неправильное значение х_аdj высокое/низкое значение коррекции тока/напряжения/ динамики шет характеристики/ конфигурации, ошибка характеристик. Неправильно подключены модули Неисправность модуля #п Нет синхр. модуля #п Запрошено много модулей Низкое/высокое значение коррекции 	Недостаточный уровень жидкости Уровня жидкости БЖО Задержка/сбой расчета ШИМ/ процесса, СРU закончилось место в памяти, неправильное значение х_аdj высокое/низкое значение коррекции тока/напряжения/ динамики шет характеристики/ конфигурации, ошибка характеристик. Неправильно подключены модули Неисправность модуля #п Сигнал неисправности системы диагностики модуля п (перегрев или отсутствие питания) Нет синхр. модуля #п Запрошено много модулей не соомодит сигнал синхронизации Запрошено много модулей не доходит сигнал синхронизации Нексомодуля #п До модуля п не доходит сигнал синхронизации Несовместимость пульта и платы СРU Низкое/высокое значение коррекции Программный сбой алгоритма работы платы

п.п.	Текст ошибки	Описание	Рекомендации
37	• Неисправность датчика тока	Неисправность платы CPU, датчика тока, или датчик тока подключен в обратной полярности	Проверить полярность подключения датчика тока. При неисправности платы CPU сообщить в сервисную службу.
38	• Не подключен датчик тока	Неисправность платы СРU, или не подключен датчик тока	Проверить подключение датчика тока. При неисправности платы CPU сообщить в сервисную службу
39	• Неисправность измерителя напряжения	Неисправность платы СРU или не подключен кабель измерения напряжения	Проверить подключение кабеля измерения напряжения. При неисправности платы CPU сообщить в сервисную службу

11.2 УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

ПРИМЕЧАНИЕ!

При некорректной работе сварочного аппарата убедитесь в правильности подключения аппарата к сети электропитания!

Табл. 24 — Неисправности и рекомендации по их устранению

Неисправность	Причина	Устранение
Защитный газ отсутствует	Газовый баллон пуст	Замените газовый баллон
	Неисправность горелки	Проверьте, при необходимости замените горелку
	Редуктор давления загрязнен или неисправен	Проверьте, при необходимости замените
	Вентиль газового баллона неисправен	Замените газовый баллон
Защитный газ не выключается	Газовый клапан загрязнен или зажат	Удалите горелку, продуйте газовый клапан сжатым воздухом в обратном направлении
Недостаточная подача защитного газа	Настроен неверный расход защитного газа на редукторе давления	Настройте согласно руководству по эксплуатации
	Загрязнен редуктор давления	Проверьте расходную шайбу
	Горелка, газовый шланг загрязнены или не герметичны	Проверьте, при необходимости замените
	Сквозняк выдувает защитный газ	Устраните сквозняк
Мощность сварки снизилась	Отсутствует фаза	Проверьте аппарат на другой розетке, проверьте подводящий кабель и сетевые предохранители

Недостаточный контакт с деталью	Установите непокрытое соединение зажима (струбцины) обратного кабеля (кабеля массы)
Кабель заземления обрабатываемой детали плохо вставлен в устройство	Зафиксируйте байонетную вилку обратного кабеля (кабеля массы) в байонетной розетке корпуса аппарата вращением вправо
Неисправность горелки	Ремонт или замена
Байонетный разъём не был зафиксирован поворотом вправо	Проверьте байонетный разъём провода
Из-за загрязнений в системе охлаждающей жидкости горелка засорилась	Промойте шланги горелки в обратном направлении
Байонетный разъём шлангового пакета горелки на центральном разъеме неправильно затянут	Затяните байонетный разъём
Недостаточное охлаждение деталей	Проверить входное и выходное отверстия воздуха на аппарате
Система охлаждающей жидкости замерзла из-за недостаточной защиты от замерзания	Уведомить сервисную службу
Отсутствует фаза	Проверить аппарат на другой розетке. Проверить подводящий кабель и сетевые предохранители
	Кабель заземления обрабатываемой детали плохо вставлен в устройство Неисправность горелки Байонетный разъём не был зафиксирован поворотом вправо Из-за загрязнений в системе охлаждающей жидкости горелка засорилась Байонетный разъём шлангового пакета горелки на центральном разъеме неправильно затянут Недостаточное охлаждающей жидкости замерзла из-за недостаточной защиты от замерзания

Ролики не подходят	Установить подходящие ролики
к диаметру проволоки	Эстановить подходящие ролики
Неправильное давление прижима на блоке подачи	Настроить согласно руководству по эксплуатации
В зависимости от конкретного процесса сварки принцип сварки с короткой электрической дугой допускает отклонения значений	Не требуется. Это свидетельствует о «внутреннем регулировании» установки, стабилизирует процесс и повышает качество сварки
Проволочный электрод затянулся на катушке	Проверить, при необходимости заменить
Грат в начале проволоки	Еще раз отрезать начало проволоки
Неправильное давление прижима на блоке подачи	Настроить согласно руководству по эксплуатации
Неисправность горелки	Проверить, при необходимости заменить
Сварочная проволока плохо намотана на катушку	Проверить, при необходимости заменить
Наконечник горелки засорён или оплавлен	Проверить, при необходимости заменить
Внутренняя спираль горелки засорилась продуктами истирания проволоки	Отвинтить горелку от аппарата, снять токоподводящий мундштук с горелки и продуть внутреннюю спираль сжатым воздухом
	прижима на блоке подачи В зависимости от конкретного процесса сварки принцип сварки с короткой электрической дугой допускает отклонения значений Проволочный электрод затянулся на катушке Грат в начале проволоки Неправильное давление прижима на блоке подачи Неисправность горелки Сварочная проволока плохо намотана на катушку Наконечник горелки засорён или оплавлен Внутренняя спираль горелки засорилась продуктами истирания

Неисправность	Причина	Устранение
Неравномерность	Внутренняя спираль	Проверить, при необходимости
или отказ подачи	горелки надломлена	заменить
проволоки	Тормоз проволоки настроен слишком туго	Настроить согласно руководству по эксплуатации
Электрическая дуга или короткое замыкание между наконечником и газовым соплом	Между наконечником и газовым соплом образовалась перемычка из брызг	Очистить сопло и наконечник

ПРИМЕЧАНИЕ!

8 Если предлагаемые решения не ликвидировали неисправность или возникшая неисправность отсутствует в таблице, обратитесь в сервисную службу!

11.3 НЕИСПРАВНОСТИ БЖО

Табл. 25 — Список неисправностей БЖО

Неисправность	Причина	Решение
БЖО не включается	Не подключен кабель БЖО к сварочному аппарату	Подключите кабель БЖО к сварочному аппарату и проверьте надежность соединения
	Не активирована работа БЖО в меню пульта управления	Активируйте работу БЖО в меню пульта управления в соответствующих настройках
БЖО включается и выключается примерно через 2 секунды с появлением ошибки «воздушная пробка в помпе»	Воздух во всасывающем рукаве помпы	Подключите технический рукав для слива охлаждающей жидкости к выходному разъему из БЖО (синяя линия) и создайте небольшое разряжение при помощи вакуумного насоса. После поступления охлаждающей жидкости в насос, проверьте корректность работы БЖО
БЖО не выключается автоматически после отпускания кнопки сварочной горелки	Перегрев охлаждающей жидкости	БЖО отключится автоматически после охлаждения жидкости до оптимальной рабочей температуры

12 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

ВНИМАНИЕ!

К обслуживанию оборудования допускается только квалифицированный персонал, изучивший требования настоящего Руководства по эксплуатации.

EVOMIG — высококачественный аппарат, не требующий длительного и трудоёмкого обслуживания. Тем не менее, в период эксплуатации для обеспечения долговременной эффективной работы необходимо:

12.1 ПЕРЕД НАЧАЛОМ РАБОТ

Перед началом работ необходимо:

- 1 Произвести внешний осмотр аппарата. Убедиться в отсутствии механических повреждений корпуса, сетевых и сварочных кабелей.
- 2 Проверить надёжность крепления байонетных разъемов на корпусе аппарата (*Puc. 2*). При необходимости соединения подтянуть.
 - 3 Убедиться, что сварочные кабели размотаны.
- 4 Проверить затяжку роликов подающего механизма УПП и очистить при необходимости подающий механизм от металлической пыли, стружки, остатков проволоки и прочих загрязнений.

5 На аппаратах, укомплектованных БЖО, проверить уровень охлаждающей жидкости, при необходимости охлаждающую жидкость долить, соблюдая правила указанные в п.п «5.1.2 Монтаж и подготовка БЖО к работе» на стр. 15.

12.2 НЕ РЕЖЕ ОДНОГО РАЗА В ТРИ МЕСЯЦА

В зависимости от условий эксплуатации, но не реже одного раза в три месяца необходимо:

- 1 Снять боковые крышки корпуса аппарата (внешние и внутренние).
- 2 Произвести визуальный осмотр аппарата и соединительных кабелей.
- 3 Убедиться в отсутствии механических повреждений, следов перегрева электрических соединений. Особое внимание следует обратить на места подключения токоведущих шин, кабелей питания и управления силовыми модулями.

12.3 НЕ РЕЖЕ ОДНОГО РАЗА В ШЕСТЬ МЕСЯЦЕВ

В зависимости от условий эксплуатации, но не реже одного раза в шесть месяцев необходимо:

- 1 Снять боковые крышки корпуса аппарата.
- 2 Снять верхнюю крышку.
- 3 Продуть соответствующие участки сжатым воздухом для очистки внутренних объемов аппарата и радиаторов от пыли.

١

ВНИМАНИЕ!

Для предотвращения повреждения лопастей вентиляторов перед продувкой следует демонтировать вентиляторы. Работы по демонтажу и монтажу должен производить квалифицированный персонал.

- 4 Произвести визуальный осмотр аппарата и соединительных кабелей и плат.
- 5 Убедится в отсутствии механических повреждений, следов перегрева и подгорания электрических соединений. Особое внимание обратить на кабели питания аппарата, сварочный кабель, кабель управления модулями и разъёмные электрические соединения.
- 6 Внести отметку результате выполненных работ в паспорт аппарата с указанием даты проведения осмотра и фамилии должностного лица проводившего осмотр.

ПРИМЕЧАНИЕ!

При работе в запыленных помещениях продувки внутренних объёмов производить по необходимости.

ПРИМЕЧАНИЕ!

При невозможности устранения дефектов, выявленных при техническом обслуживании, следует обратиться в сервисную службу!

ВНИМАНИЕ!

✓ При измерении сопротивления изоляции (ГОСТ Р МЭК 60974-4-2014) провода контроля фаз платы ЦПУ аппарата должны быть отсоединены и заизолированы.

13 ГАРАНТИИ ПРОИЗВОДИТЕЛЯ

Производитель гарантирует исправную работу продукции в течение гарантийного срока. При выявлении неисправности в течение гарантийного срока, Покупатель имеет право на ремонт оборудования за счёт Производителя.

Гарантийный срок исчисляется со дня продажи, указанного в паспорте изделия. При отсутствии отметки о дате продажи в паспорте изделия гарантийный срок исчисляется со дня выпуска аппарата.

При нарушении эксплуатирующей организацией правил, предусмотренных действующими стандартами, техническими регламентами или Руководством по эксплуатации оборудования, приведшем к отказу в работе оборудования, выявленная неисправность гарантийным случаем не признается. Затраты на диагностику, ремонт и связанные с этим расходы, в том числе расходы на выезд специалиста для диагностики и ремонта, несет Покупатель.

13.1 Производитель устанавливает гарантийный срок 36 месяцев на:

- сварочный аппарат и программное обеспечение;
- устройства подачи проволоки (УПП);
- блоки жидкостного охлаждения (БЖО), кроме насоса блока жидкостного охлаждения*;
- транспортные тележки.

* На насос БЖО, являющийся покупной деталью, установлен гарантийный срок 12 месяцев.

13.2 Производитель устанавливает гарантийный срок 12 месяцев на:

- компоненты автоматизации;
- компоненты механизации;
- промежуточные пакеты шлангов;

- насос блока жидкостного охлаждения;
- пульты дистанционного управления.

13.3 Производитель устанавливает гарантийный срок 6 месяцев на:

- запчасти, поставляемые отдельно от основного оборудования (печатные платы, устройства зажигания дуги и т. д.);
- все покупные компоненты, которые используются Производителем, но произведены другими изготовителями (двигатели, вентиляторы и т. д.).

13.4 Гарантия не распространяется на:

- не поддающиеся воспроизведению ошибки и неисправности;
- расходные материалы и компоненты;
- естественный износ или механическое старение механизмов подачи проволоки, в т. ч. роликов; кабелей массы, соединительных кабелей, электрододержателей, удлинителей, кабелей питания, кабелей управления, штекеров, изнашивающихся деталей горелок, магнитных клапанов, колёс, и т. д..

13.5 Гарантия аннулируется при:

- использовании нештатных принадлежностей (промежуточного пакета шлангов, дистанционного регулятора, соединительного кабеля, жидкости охлаждения и т. д.), повлекших неисправность;
- нарушении Покупателем правил технического обслуживания и эксплуатации аппарата, предусмотренных настоящим Руковоством, действующими стандартами или техрегламентами, приведшем к отказу в работе.

13.6 Использование права на гарантийное обслуживание:

Для предъявления требований об устранении выявленного дефекта по гарантии в адрес Производителя или в аттестованный Производителем сервисный центр, необходимо предъявить:

- неисправный аппарат или вышедшую из строя принадлежность, по которой заявлена рекламация;
- паспорт изделия с заполненным гарантийным талоном и заполненной заявкой на ремонт;
- документ, подтверждающий покупку изделия.

Транспортные расходы, связанные с доставкой оборудования к месту проведения ремонта и обратно, а равно выезд

специалиста для диагностики неисправности в эксплуатирующую организацию (по отдельному соглашению), гарантией Производителя не покрываются.

Замененные при гарантийном ремонте изделия Покупателю не возвращаются.

Гарантийные обязательства Производителя и условия предоставления гарантии, изложенные в паспорте изделия, могут быть пересмотрены исключительно Дополнительным соглашением к договору поставки, заключённым в письменной форме.

14 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Изделие транспортируется всеми видами транспорта, в том числе в герметизированных отапливаемых отсеках воздушных судов, в соответствии с Правилами перевозки грузов, установленных на воздушном транспорте.

Условия транспортировки должны соответствовать условиям по группе 5 ГОСТ 15150, условия хранения — по группе 2 ГОСТ 15150.

Срок службы 5 лет.

15 УТИЛИЗАЦИЯ

Не допускается выброс отработавшего электротехнического и электронного оборудования на свалку для бытовых отходов. Настоящее изделие должно быть утилизировано в соответствии с ГОСТ Р 55102 или действующими национальными директивами.

16 СВЕДЕНИЯ О СЕРТИФИКАЦИИ

ERC

Настоящее изделие соответствует требованиям технических регламентов Таможенного союза EAЭС — Декларация о соответствии EAЭС N RU Д-RU. AK01.B.09855/19 от 19.04.2019.

Заключение о подтверждении производства промышленной продукции на территории РФ — исх. №20866/11 от 05.04.2018 Минпромторга РФ.

Предприятие сертифицировано в системе сертификации ЕвроСтандартРегистра ГОСТ ISO 9001-2015 (ISO 9001:2015) — Сертификат соответствия №РОСС RU.C.04XЖ.CK.1389 от 20.11.2018.

17 ПРОИЗВОДИТЕЛЬ

Общество с ограниченной ответственностью «Завод технологических источников» (ООО «ЗТИ») 194223, Россия, Санкт-Петербург, Курчатова 9 Е, пом. 31 +7 (812) 331-11-81

Предприятие является членом Союза «Санкт-Петербургская торговая палата» — Регистрационный номер 33-4414.

Информацию о сервисных центрах вы можете получить на сайте evospark.ru

