Проектирование пространственно-армированных непрерывными волокнами конструкций для аддитивных технологий изготовления (AT)

Прокофьев Г.И. ООО «НПФ РАПС»

тел. +7(812)234 66 77, +7 (901)301 59 35 giprokofiev@yandex.ru

Разделы доклада

- 1. Вызовы среды и АТ
- 2. Слоистые и неслоистые конструкции в АТ
- 3. Оптимизация конструкций
- 4. Концепция 2.5D армирования для AT

Актуальные аспекты вызовов среды

Конкурентоспособность продукции,

процессов и предприятий

- 1. «Дешевле, быстрее, лучше на жизненном цикле»
- 2. Улучшение ТТХ новой продукции в разы (на стадии концептуального проектирования)
- 3. Оптимальные изделия (индивидуального применения)
- 4. Модельно-ориентированная разработка (на всех этапах)
- 5. Соответствие концепции «Индустрия 4.0» (цифровые исполнительные системы, роботизация производства)

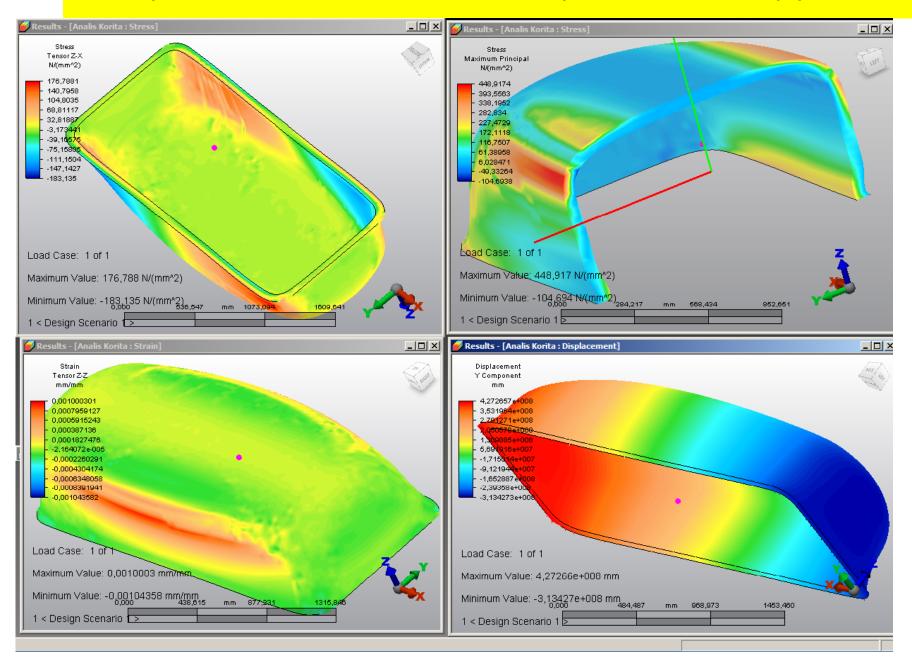
Автоматизированные АТ встраиваются в тренд конкурентоспособности

Существенные особенности АТ

- 1. Материал укладывается на поверхность (добавляется поверх уложенного)
- 2. Требуют свободное пространство для манипуляции рабочим органом исполнительной системы
- 3. Практически не ограниченны габариты и формы изготавливаемых конструкций
- 4. Отсутствие отходов (трудно утилизируемых)
- 5. Дают анизотропию свойств конструкции при многокомпонентном составе материала (композита)
- 6. Материал и конструкция «рождаются» одновременно

Средства (параметры) оптимизации конструкций в АТ

- Геометрическая форма (структура конструкции создается в процессе концептуального проектирования и мало варьируется при конструкторском и технологическом проектировании)
- Компонентный состав материала (определяется средой эксплуатации и мало варьируется при конструкторском и технологическом проектировании)
- **Схема армирования** (определяется при конструкторском и технологическом проектировании и является основным средством оптимизации)


Решение 1: АТ изотропных конструкций

(технологии разработки и изготовления)

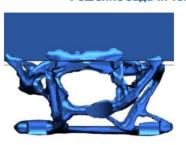
На основе изотропных свойств материала конструкции

- Средства конструкторского
 проектирования (машиностроительные САПР: САD, САЕ, САМ)
- -Технологии изготовления, дающие хаотичное расположение армирующих ВОЛОКОН (коротко-волоконные композиты, пластмассы, металлы)
- **СЭНДВИЧИ** (сборка деталей, состоящих из разных изотропных материалов)

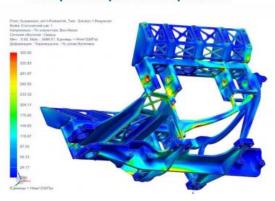
Результаты анализа НДС изотропной конструкции

Пример топологической оптимизации геометрии изотропной конструкции

НТЦ «АПМ» и МГТУ им. Н. Э. Баумана


Подрамник грузового тягача 4x2

Пространство проектирования подрамника


Решение задачи топологической оптимизации

Интерпретация решения в виде деталей

Поверочный расчет на прочность

литой подрамник из недорогой стали

Результат: легкий

Автор: Шаболин Михаил, аспирант 1 года обучения кафедры СМ10

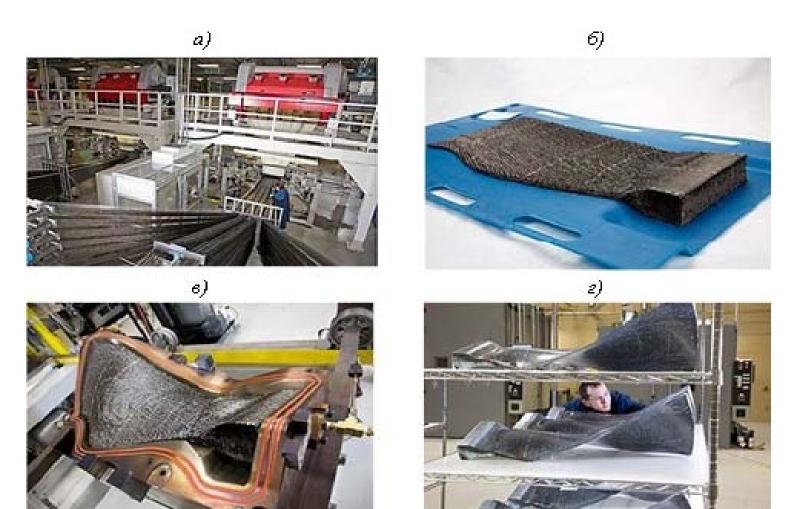
Решение 2: АТ с армированием слоев

(технологии разработки и изготовления)

На основе анизотропии свойств слоев композита конструкции

(машиностроительные САПР: Siemens NX, CATIA и др., спец. CAПР: FiberSim, CADFiber и др.)

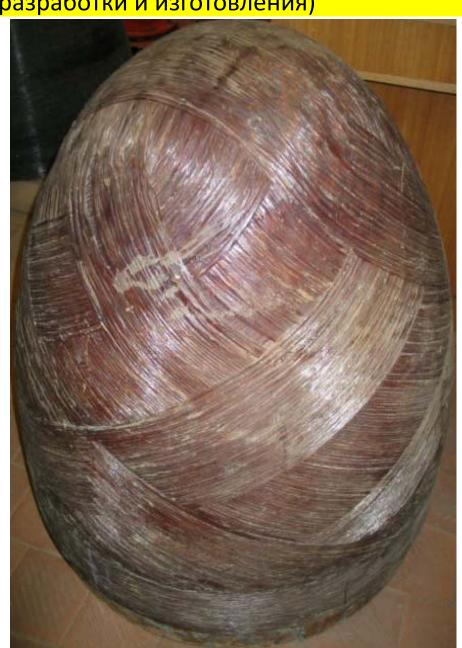
Укладка лент армированного материала на поверхность (одинарной и двойной кривизны)


Низкие допустимые касательные напряжения, обусловленные свойствами связующего материала, расслоение материала конструкции.

Решение 3: 3D-армирование

(технологии разработки и изготовления)

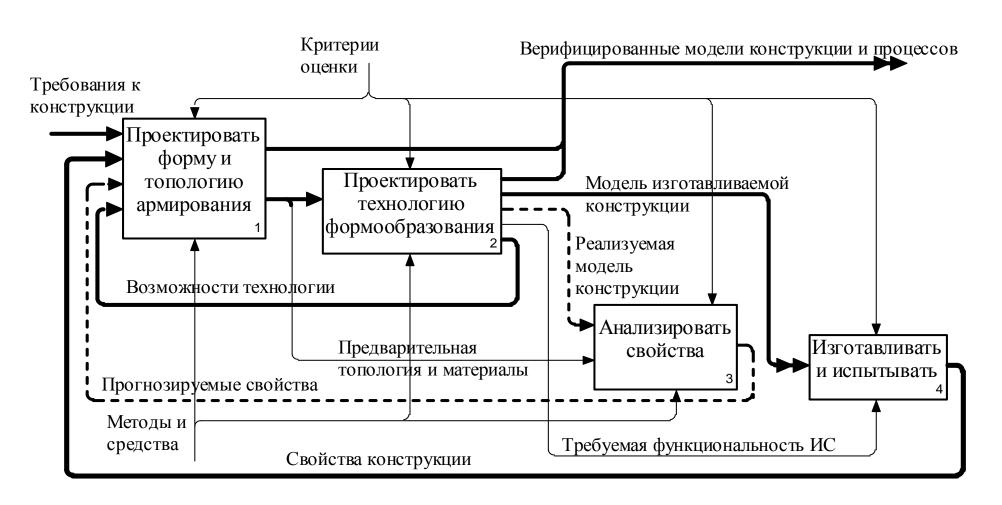
На основе анизотропии свойств армированной композитной конструкции


(плетение, ткачество. Технологии разработки автору неизвестны)

Решение 4: AT с 2.5D-армированием

(технологии разработки и изготовления)

На основе анизотропии свойств конструкции, полученной посредством формирования очередности укладываемых армирующих лент вдоль заданных траекторий укладки


Проблемы разработки несущих нагрузки конструкций с 2.5D-армированием

- 1. Уметь разрабатывать (проектировать и изготавливать) оптимальные анизотропные конструкции
- 2. Взаимное влияние ограничений процессов проектирования и изготовления (требуется параллельное конструкторско-технологическое проектирование)
- 3. Нет концепции моделирования процессов проектирования и формообразования оптимальных армированных конструкций

Задачи «параллельного» проектирования оптимальных конструкций с 2.5D-армированием

- 1. Синтезировать форму поверхностей и топологию арматуры (геометрическую модель) оптимальной анизотропной конструкции (конструкторское проектирование).
- 2. Реализовать технологически геометрическую модель конструкции, близкую к оптимальной (технологическое проектирование и формообразование)

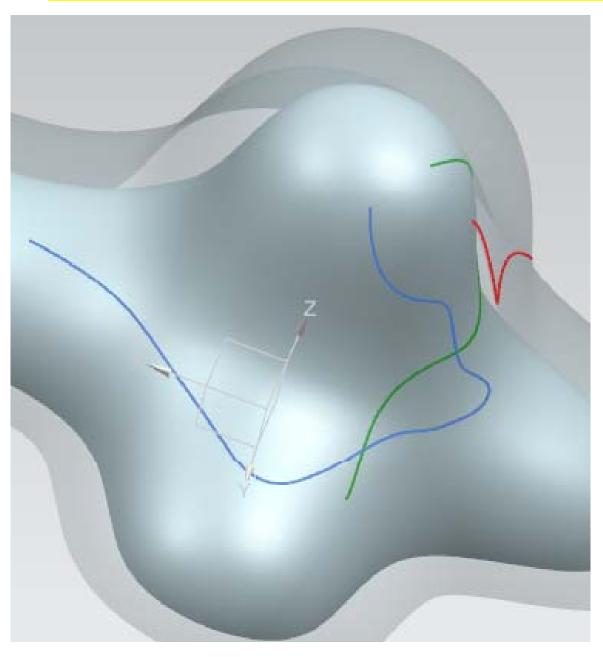
Модель процесса разработки конструкции с 2.5D-армированием С чего начать?

Технологическое проектирование

Связанно с созданием:

моделей

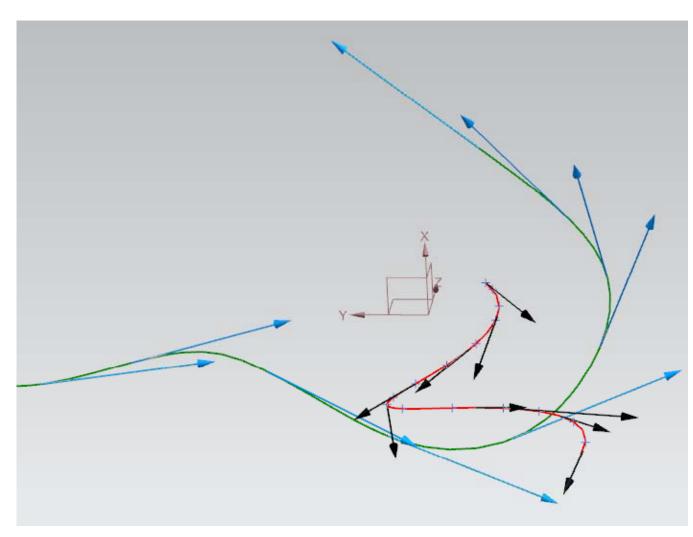
- 1. Армирования конструкции (топологии, схемы армирования)
- **2. Технологически реализуемых траекторий укладки** (с которых не «уходят» натянутые армирующие ленты)
- 3. Технологически реализуемой топологии арматуры конструкции (соответствующей требованиям конструктора)
- **4.** Управления исполнительной системой (коллективом роботов при их работе с перекрывающимися рабочими зонами)


УСТРОЙСТВ (технологической оснастки):

- 1. Сменных рабочих органов
- 2. Системы снабжения материалами процесса формообразования

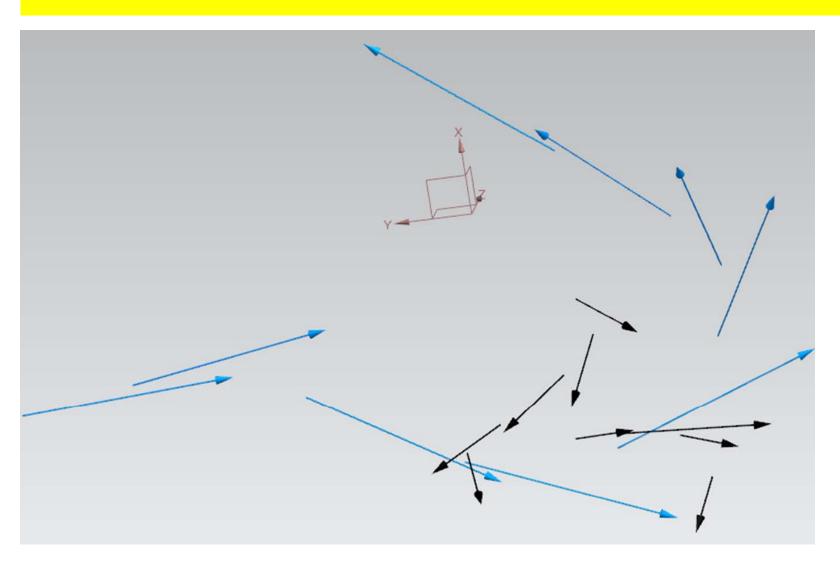
программ:

- 1. подготовки геометрических и технологических данных
- 2. управления процессом выращивания конструкции


Задача технологического проектирования

- 1. Задан объем, занимаемый материалом конструкции, ограниченный поверхностями.
- 2. Задано принадлежащее объему конечное множество траектории армирования, синтезированное в процессе конструкторского проектирования.
- 3. Нужно наполнить заданный объем материалом армированных однонаправленных лент, последовательно уложенных на поверхности укладки вдоль заданных траекторий армирования.

Имеет ли задача решение?16


Дискретизация траекторий укладки

Непрерывные траектории заменяются конечным множеством касательных векторов в точках траекторий армирования.

Задача: заполнить заданный объем материалом в виде однонаправленных армированных лент, проходящих в пространстве конструкции через начала векторов и касающихся их.

Векторы армирования, ИСА

Положения концепции синтеза топологии АМ

(при технологическом проектировании)

- 1. Исходная схема армирования (ИСА) содержит:
- геометрические модели поверхностей конструкции
- КОНЕЧНОЕ МНОЖЕСТВО ВЕКТОРОВ армирования, начала которых расположены на расстоянии, кратном толщине армирующего материала (AM) от формообразующей поверхности (ФП). В тех областях (объемах) конструкции, где ориентация арматуры может быть произвольной, векторы армирования вырождаются в точки.
- КОМПОНЕНТНЫЙ СОСТАВ МАТЕРИАЛА (атрибуты вектора армирования)
- 2. АМ можно уложить на поверхность укладки (ПУ)
- 3. Синтезируемая на основе ИСА траектория укладки принадлежит ПУ и проходит через начала векторов армирования касательно им
- 4. При синтезе траекторий укладки следует учитывать технологические требования к ним (стабильность положения натянутого АМ на траекториях укладки или/и деформационные свойства АМ)
- 5. ПУ изменяется в результате укладки АМ вдоль траектории укладки. Начальной ПУ является ФП.

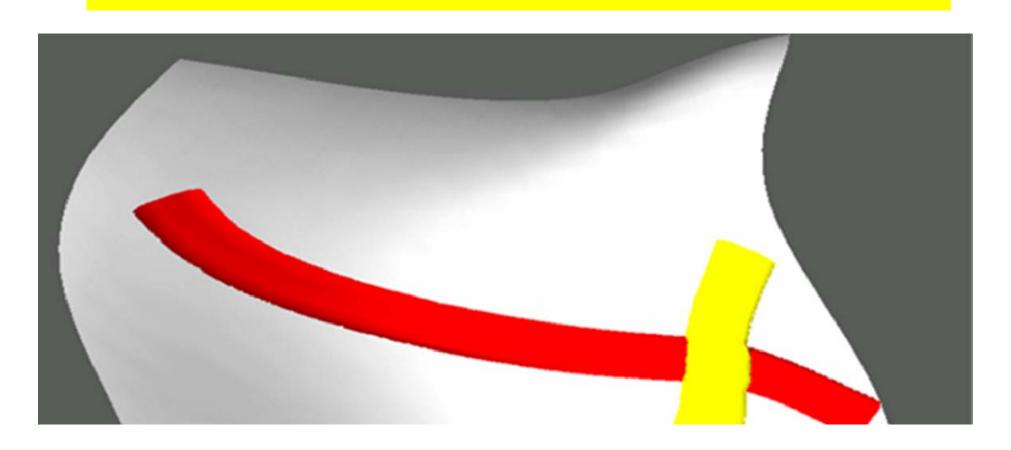
Пример технологического ограничения

Общий алгоритм синтеза траекторий укладки и выращивания конструкции

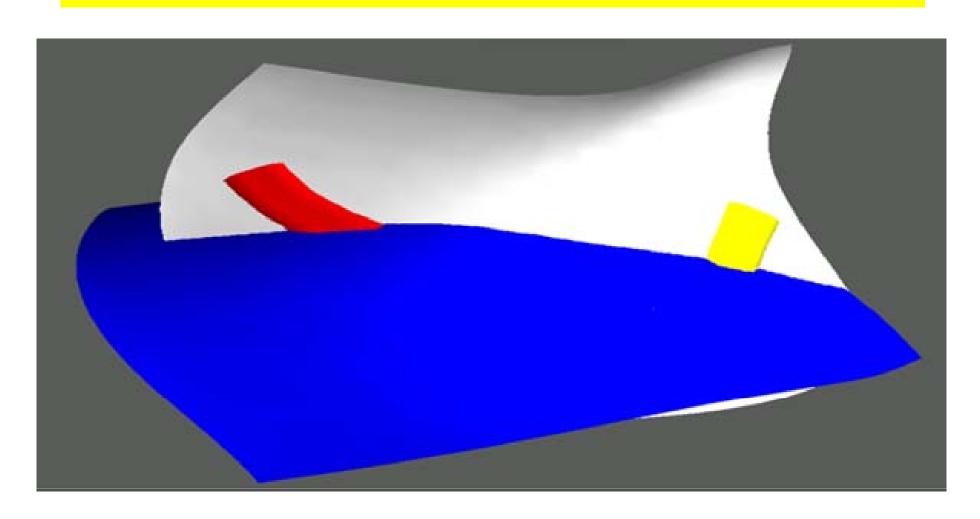
Начальное состояние - поверхностью укладки (ПУ) является ФП (ни одна полоса не уложена);

- 1. Претендентами на включение начала векторов армирования в траекторию укладки полосы АМ являются векторы из набора набор векторов, начала которых принадлежат ПУ, у которых одинаковы значения атрибута «материал». Из этого набора выбираются векторы, через начальные точки которых можно построить траекторию укладки, удовлетворяющую требованиям к ней.
- **2. На ПУ синтезируется траектория укладки в пространстве конструкции,** предназначенном для заполнения материалом.
- **3. Строится геометрическая модель полосы АМ**, уложенной вдоль синтезированной траектории на ПВ.
- 4. Векторы, использованные при синтезе предыдущей траектории укладки исключаются из исходной схемы армирования (MCA).
- **5. Объединяются предыдущая ПУ и свободная поверхность уложенной полосы**. В результате выполнения пунктов 3 и 4 получается новая ИСА и очередная ПУ.
- **6. Для очередной ПУ формируется очередной набор векторов армирования**, начала которых лежат на очередной ПУ. С их использованием синтезируется очередная траектория укладки, строится модель очередной полосы уложенного не нее материала.
- 7. Процесс синтеза траекторий укладки и полос на ПУ повторяется пока очередной набор векторов армирования в ИСА не пуст.
- 8. Полосы, выступающие за поверхности конструкции, обрезаются этими поверхностями.

Синтез траектории на ФП


Геодезическая – стабильная траектория

Степень отклонения от геодезической - угол между нормалями к кривой и поверхности


Модель армированной полосы на ФП

Очередные поверхности укладки

Обрезка полос внешней поверхностью конструкции

Итоги

- 1. АТ позволяют изготавливать 2.5Dармирование неслоистые конструкции с заданным армированием с использованием промышленных систем укладки
- 2. Процессы конструкторского и технологического проектирования 2.5D-армированных конструкций имеют сильные связи
- 3. Методы и средства разработки конструкций с 2.5D-армированием являются перспективными, инновационными и соответствуют концепции «Индустрия 4.0»