

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ

по экологическим характеристикам домов, изготавливаемых из сэндвич-панелей плита OSB-пенополистирол - плита OSB

Экспертное заключение по экологическим характеристикам домов, изготавливаемых из сэндвич-панелей плита OSB-пенополистирол-плита OSB

В течение последних 17 лет, в связи с разрушением единой общегосударственной системы санитарно-гигиенического контроля за применением полимерных материалов в строительстве, в Россию хвынул поток токсичных и высокотоксичных строительных материалов, массовое применение которых наносит серьезный вред здоровью миллионов полей.

К особо опасным материалам и конструкциям относятся, так называемые, сэндвичпанели, появившиеся в РФ с 2000 года и дома из этих панелей, получивших в нашей стране общее название «канадская технология домостроения».

Технология получения сэндвич-панелей состоит в склеивании пластин из пенополистирола (ППС) с плитами OSB (ОСБ) с получением 3-х слойной конструкции

Толщина слоя ППС составляет от 100 до 200 мм, а склеивание слоев осуществляется в основном при помощи полиуретановых клеев.

В чем же состоит особая экологическая (санитарно-химическая) опасность домов, собранных из рассматриваемых сэндвич-панелей?

Санитарно-химические характеристики плит

Плиты OSB являются разновидностью древесно-стружечных плит (ДСП), которые в конце 80-х годов прошлого века, после скандала, связанного с отравлением людей формальдегидом, были запрещены к применению в строительстве. Запрешеные исколило от Минадрава СССР, а представление к запрету сделал «Междуведомственный комитет по санитарно-питиенической регламентации применения полимерных материалов в строительстве и на транспорте». Этот запрет действителен и в настоящее время.

Плиты ОSВ отличаются от объяньку ДСП ориентированным расположением шепы в слояк, что обеспечивает им значительно большую прочность по сравнению с ДСП, а с точки зрения санитарной химии и экологических характеристик, плиты ОSВ и ДСП ничем не отличаются - а обоих случаях в качестве связуещего используются мочевиноформальдегидные смолы, отвечающие за высокую токсичность как плит ДСП, так и ОSВ. Концентрация мочевино-формальдегидных смол составляет от 12 до 14% массовых от исходной композиции. Готовые плиты ДСП и ОSВ при использовании их в строительстве выделяют в воздух помещений формальдегид и метанол, которые относятся к высокотоксичным веществам и присутствуют в воздухе помещений в концентрациях, значительно превышающих предельно-допустимые концентрации среднесуточные для агмосферного воздуха и воздуха помещений (ПДК с).

Почему это происходит и почему материалы, содержащие мочевино-формальдегидные смолы нельзя применять в жилых помещениях, будет рассмотрено ниже.

Источники и причины постоянного выделения формальдегида из древесно-плитных материалов

1. Остаточный формальдегил в мочевино-формальдегилных смолах (М.-ф.с). При синтезе М.-ф.с. поликонденсация формальдегида (ФА) с мочевиной не проходит до конца и останавливается на стадии равновесия, при которой М.-ф.с. как товарный продукт содержат от 0,1% до 0,5% массовых ФА. При изготовлении древесно-плитных материалов остаточный ФА сорбируется на частицах древесины и при эксплуатации выделяется в окружающую среду.

Ситуация с остаточным формальдегилом усутубляется также тем, что и в исходном формальне и в «концентратах», содержащих водный раствор ФА и мочевины, часть ФА содержится не в свободном виде, а в виде олигомерных соединений с водой - олигометилентликолей и не обнаруживается обычными методами определения свободного формальдегида:

В процессах прессования древесно-плитных материалов при температурах от 160^3 до 175° С указанные олигомеры разрушаются и выделяют свободный Φ A, также попадающий в массу древесноплитного материало

- 2. Отщепление свободного ФА от отвержденной М.-ф.с. в процессе производства.
- В соответствии с литературными данными, отвержденная М.-ф.с, склонна к термической деструкции и, начиная со 155°С (по другим данным со 135°С) начинается активное отщепление свободного формальдегида за счет разрушения метилольных (-CH,-OH) групп и метиленэфирных связей (-CH,-O-CH,-) [1] [2] [3].
- В тоже время, как уже упоминалось выше, температурный режим прессования древесноплитных материалов лежит в диапазоне 160⁹ 175°C, и в поверхностных слоях материала, примыкающих к плитам пресса, отвержденная М.-ф.с. интенсивно отщепляет фа
 - 3. Постоянное выделение ФА в процессе эксплуатации.

В дополнение к вышеперечисленным факторам, приводящим к выделению ΦA , очень важно отметить, что и при обычных условиях эксплуатации отвержденные M- φ -c. постоянно отшепляют ΦA за счет разложения метилольных групп и метиленэфирных связей.

Токсическое действие ФА на организм человека

По физико-химическим характеристикам формальдегид, формула CH,=0, молекулярная масса 30,03, бесцветный горючий газ с резким раздражающим запахом, температура кипения -19,2°C, хорошо растворим в воде, пределы взрываемости с воздухом от 7 до 72 объемных %.

В промышленности ФА получают окислением метилового спирта кислородом воздуха в присутствии катализаторов, поэтому промышленный ФА всегда содержит примеси метилового спирта:

$$CH_{9}OH + V_{2}f_{>2} - CH_{1}O + H_{1}O$$

Примесь метилового спирта усиливает токсичность М.-ф.с. в качестве связующего [4]. По данным токсикологов [5], ФА раздражающе действует на слизистые оболочки и кожу, сильно действует на центральную нервную систему, особенир на зрительные бутры и сетчатку глаз (особенно при совместном присуствии метилового спирта). Угнетает синтез нуклеиновых кислот, нарушает обмен витамина С, обладает мутагенными свойствами, раздражает верхние дыхательные пути. Порто восприятия запаха ФА нахолится в пределах (0,0007-0,0004 мг/л (0,07-0.4 мг/м²).

При любых путях поступления в организм человека ФА быстро и полно всасывается и, в частности, накапливается в костном мозге. В организме ФА превращается в муравьиную кислогу и метанол, наиболе полно эта реакция происходит в печени.

С середины 70-х годов прошлого века в санигарно-токсилогической литературе стали появляться сведения о канцерогенности ФА. В дальнейшем работы по подтверждению канцерогенности ФА продолжались и в игоге в 2004 году ФА был официально признан прямым канцерогеном и внесен в список канцерогенных веществ Всемирной Организации Запавоохранения пли Оотранизации (Объемиенных Наций.

В 80-х годах прошлого века в Европейских странах, США и СССР разразился крупный скандал, связанный с отравлением людей ФА, выделявшимся из вспененной М. -ф., применявшейся в качестве теплоизоляции в малюэтажном домостроении, Именно в этот период в СССР было запрешено применение в жилишном строительстве указанной теплоизоляции «Петоизоль», а также древеспоструженных плит и фанеры. В указанный период среднесуточная предельно-допустимая концентрация ФА в воздуже населенных мест (среднесуточная) составляла ПДКс, =0,003 мг/м′ (ранее была 0,010 мг/м′) [5]. Эта жесткая норма уже учитывлал данные канцерогенности ФА.

В начале 90-х годов те страны Западной Европы, где уделяется большое внимание охране здоровья населения (Германия, Финляндия, Швеция), применение в жилишном строительстве материалов, выделяющих ФА, было запрещено, В том числе и плиты ОЅВ в этих странах не применяются.

В октябре 2006 года на конференции по деревянному домостроению, проходившей в рамках Международной выставки «Лесдревмани-2006», представителю финской домостроительной компании был задал вопрос: «Применяются ли плиты ОSВ в домостроении в Финляндии?» Ответ был таков: «Плиты ОSВ в Финляндии и других странах Западной Европы производятся, но в строительстве не применяются, а оптравляются на экспорт в США. Канаду и Россию (!!).

В заключение очень важно отметить, что современные исследования конструкций плита ОS В-пено поли стирол-плита ОSВ показали по солержанию Φ A в окружающей возлушной среде спедующие данные (октябрь 2006 года) концентрация Φ A в возлуче осставила 0,067 мг/м³, т.е. в 22 раза выше ПДК $_{\rm CC}$ (!), а при 40°С концентрация Φ A в возлуче составила 0,23 мг/м², т.е. в 76 раз выше ПДК $_{\rm CC}$ (!). При этом отметим, что исследования проводились не случайной фирмой, а Φ едеральным государственным учреждением здравоохранения «Центр гипчены и эпидемиологии» в Омской области.

Официальный протокол этого обследования приводится в приложении № 1 к настоящему заключению.

Таким образом, незаконное возвращение в строительство в $P\Phi$ древесноплитных материалов с M-ф.с. в качестве связуещего совершенно недопустимо, а в случае продолжения этого безакония будет нанесен серьезный ущерб здоровью тысяч людей!

Однако недопустимо высокий уровень выделения канцерогенного ФА из плит OSBоболочек рассматриваемой конструкций - это не единственная экологическая опасность

Как уже упоминалось, выше, эти «канадские» конструкции между 2-мя плитами OSB содержат пенополистирольный вкладыш полщиной от 100 до 200 мм, и этот вкладыш представляет не меньшую экологическую опасность, чем глиты OSB.

Санитарно-химические характеристики

пенополистирольных плит

Пенололистирол (ППС) - газонаполненный пенопласт на основе (IIC)-В современных произволствах ПС полистирола вспенивание осуществляется в основном за счёт использования £Ш£кокипящих жилкостей (изопентан. метиленхпорид и др), которые вводят при полимеризации стирола (C), в полистирольный «бисер». При нагревании например в горячей воде, бисер вспенивается, образуя предвспененные гранулы, которые после сушки и вылёживания спекаются в объёмные блоки при температурах 140-170° С и давлениях 150-200 КГС/см². Блоки затем режут на нужные размеры. В промышленности используется также экструзионный, непрерывный метод получения (ППС). Основная токсикологическая опасность ПС соответственно состоит в том, что ПС относится к равновесным полимерам. при обычных условиях эксплуатации полвержены деполимеризации и в результате уже при обычных условиях эксплуатации ПС находится в равновесии со своим высокотоксичным мономером (С.):

ПС н ^ ПС "л + С.

Поскольку из любой конструкции стирол испаряется, температура его кипения 145,2° С, то равновесие непрерывно сдвигается вправо и ППС, всегда насыщается С, и постоянно выделяет С. в окружающую среду. Наличие термодинамического равновесия ПС 2°2Г ПС + С. Доказано экспериментально, и концентрация С, в ПС зависит от температуры (повышение температуры вызывает повышение концентрации С, за счёт сдвига равновесия вправо) и от значений Д И ИЛЕ. При 25° С концентрация С в ПС составляет 10° Кмолей/М° ПС. Так как один Кмоль ПС составляет 104 х 10° гр, "то при 25° С в 1 М³ ПС будет содержаться 104мг.С, что очень много с учётом того что величина ПДКсс для С составляет 0,002 мг/М³ воздуха населённых мест и помещений И!

Стирол (C) формулы Ce H_s CH=CHг -бесцветная жидкость со специфическим запахом, плотностью 0,906 г/см³, температура кипения 145,2 $^{\circ}$ C,

Основной метод получения - каталитическое дегидрирование этилбензола, который в дальнейшем как примесь сопорвождает стирол и попадает в состав полистирола (ПС) и пенополистирола (ППС). При окислении стирола кислородом воздуха образуется бензальдегид и формальдегид (ФА) !!! При высоких температурах (от160° С и выше) ПС подвергается интенсивной деструкции (в реальных условиях термоокислительной деструкции) разлагаясь в основном до высокотоксичного С, сильнейшим образом отравляя окружающую среду и людей, что и имеет место при пожарах в зданиях, утеплённых ППС. Помимо этого, при пожарах ППС плавится и его плав горит, а температура горящего плава ППС остигает 1100° С, что приводит к разрушению даже мощных металлических

конструкций. Именно из-за высокой температуры горения ППС его используют как основной компонент в напалмовых бомбах, используемых, в том числе и для уничтожения бронетехники противника И! Из-за этих свойств ППС е, его категорически запретили к применению как утеплителя в железнодорожных вагонах ещё более 15 лет назад. В работах НПО- «ВНИИСТРОЙПОЛИМЕР» по санитарно-химической оценки различных строительных конструкций, утеплённых ППС, проведённых в 70" -80" годах прошлого века было показано, что ни одна из представленных конструкций не может быть применена в строительстве жилых зданий. Причиной этого было превышение реального содержания С.в воздухе над значением ПДКсс для С. В 90" годах отрицательное заключение получил так называемый пенополистиролбетон, который предполагали заливать в полые конструкции. Превышение концентраций С.в 2-4 раза над уровнем ПДКсс-

Данные по токсичности стирола

Согласно источнику [6], регулярное воздействие С. на организм человека вызывает функциональное расстройство центральной и вегетативной нервной системы. С*отрицательно воздействует на кровь человека, вызывая лейкоз, отрицательно действует на печень, может вызвать токсический гепатит. Особая опасность стирола состоит в том, что он обладает эмбриогенным действием, то есть при длительном воздействии вызывает уродство эмбриона в чреве матери (см. работы профессора Бокова А.Н., в трудах кафедры гигиены и токсикологии полимерных материалов Ростовского мединститута.)

С.обладает ещё одним опаснейшим свойством - высоким коэффициентом кумулятивности, то есть ярко выраженной способностью накапливаться (концентрироваться) е организме человека. В доказательство приведём таблицу коэффициентов кумулятивности ряда вредных веществ, выделяющихся из полимерных строительных материалов:

Коэффициенты кумулятивности ряда вредных веществ

Табл.1.

ВЕЩЕСТВО	КОЭФФИЦИЕНТЫ КУМУЛЯТИВНОСТИ			
Оксид углевода	0,1195			
Диоксид азота	0,176			
Фенол	0,2815			
Формальдегид	0,575			
Бензол	0,633			
Стирол	0.7005			

Таким образом, далже при содержании стирола в воздухе помещений на уровне ПДКсс (0,002 мг/М*), он будет оказывать сильное токсическое действие на организм человека за счёт кумуляции (накопления).

ЗАКЛЮЧЕНИЕ

Таким образом, вся информация, имеющаяся на настоящее время по вопросам токсикологии формальдегида и стирола и конкретно по сэндвич панелям (плита OSB - пенополистирол - плита OSB), свидетельствуют о том, что дома, построенные из таких панелей, являются настоящими «газовыми камерами» для людей. Помимо этого, данные дома представляют исключительно высокую пожароопасность и в случае пожара , шансы на спасение людей - минимальны. В силу вышеизложенного утверждаю, что строительство домов из сэндвич панелей является экологическим преступлением против граждан РФ и должно быть немедленно запрещено.

ССЫЛКИ

- 1. Энциклопедия полимеров, т. 2, изд. «Советская энциклопедия», М., 1974.
- Слоним И.Я. Урман Я.Г.кн. ЯМР -спектрометрия гетерогенных полимеров, М, 1982г.
- 3. Уокер Дж. Ф. Формальдегид, пер. с английского, М., 1957
- 4. Химическая энциклопедия, том 5 изд. «Большая Российская Энциклопедия, т. 5,М., 1997
- Министерство здравоохранения СССР, Главное санитарноэпидемиологическое управление. «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест., М, 1984г.
- «Вредные вещества в промышленности» Т.1, Издательство «Химия», Ленинградское отделение, 1976г.

Зам. директора ОАО «Гипролеспром», по науке д.х.н.,

Академик РАЕН. Главный эколог деревянного домостроения

Мальцев В.В.

04 марта 2008 года

Федеральная служба по надзору *в* сфере защиты прая потребителей и благополучия человека ввдералиноо гоеудврътв*лнии учревдание здравоохранения

"Центр гигиены и эпидемиологии в Омской области"

юридический адрес 644116, Г. Омск. ул. 27 Северная, -42а телефон 63-0&-Э2, факс: 83-09-77 № ГСЭН RU ЦОА 076 № РОСС RU 0001.510193 от 30.06.2003 г. по 30.06.2008 Г.

ПРОТОКОЛ

От 23.10.2006

№ 153W

1. Проба, образец (от партии) Панели из ОСП с утеплителем из пенополиетирола,

2. Дата выработки, объем партии

3. Изготовитель Полимерстрий ЭДО

4. Наименование Полимерстрой ЗДО

и адрес заказчика $_{_{\rm P}},\,$ оиск, пр. Мир * дом 1В5Й

• 5, Дата получения проб, образцов 23.10.200G г.

Дата окончания исследования 25.10.2008 г,

в, Нз соответствие требованиям

Сан Пин 2.1.2.723-И,

7. Описание образца

Образец размером 400*600, обшит гипсокартоном, швы ло углам промазаны шпатлевкой.

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ОБРАЗЦОВ

Ne nn.	Наименование показателей	НД на методы испытаний	Результаты испытаний	Допустимые величины	
1	Фор _м ал _ь двГидприТ20С	РД 52.04.1B6-SS	0,087	небслве	0,003 мг/"з
_	<u>ФормаладегидлриТ40С</u>	РД52.04.18М9	0.23	U более	0,003 мгДв

Испытания прозедены и.Н. Барабан

Руководитель испытательного лабораторного центра

Формальдегид официально признан канцерогеном

Международное агентство по исследованию рака, являющееся частью Всемирной организации здравоохранения, признало, что накоплено достаточно данных, чтобы утверждать, что это вещество может вызывать онкологические заболевания, В то же время только в Европе с формальдегидом на производстве сталкивается до миллиона работников.

Как говорится в заявлении, сделанном экспертами организации, доказана связь формальдегида, применяющегося в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего состава, с повышенным риском развития раковых опухолей носоглотки. Есть неокончательные данные, что это вещество может приводить к лейкозам.

18 июня 2004. 13:02